Bài 8 trang 119 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho hình chữ nhật ABCD có AD = 18 cm, CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D

Đề bài

Cho hình chữ nhật ABCD có AD = 18 cm, CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Phương pháp giải – Xem chi tiết

+) Dựa vào tính chất: Hình chữ nhật có hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

+) Áp dụng định lí Pytago tính đường chéo của hình chữ nhật, từ đó tính bán kính.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

 

Gọi \(O = AC \cap BD\).

Do \(ABCD\) là hình chữ nhật, do đó hai đường chéo \(AC\) và \(BD\) bằng nhau và cắt nhau tại trung điểm mỗi đường \( \Rightarrow OA = OB = OC = OD\).

Vậy bốn điểm \(A,\,\,B,\,\,C,\,\,D\) cùng thuộc đường tròn tâm \(O\), bán kính \(R = OA = OB = OC = OD\).

Áp dụng định lí Pytago trong tam giác vuông \(ACD\) ta có:

\(AC = \sqrt {A{D^2} + C{D^2}}  = \sqrt {{{18}^2} + {{12}^2}}\)\(\,  = \sqrt {468}  = 6\sqrt {13} \,\,\left( {cm} \right)\).

Vậy \(R = OA = \dfrac{1}{2}AC = \dfrac{1}{2}.6\sqrt {13} \)\(\,  = 3\sqrt {13} \,\,\left( {cm} \right)\).

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG