Bài 3 trang 5 SBT toán 9 tập 2

Giải bài 3 trang 5 sách bài tập toán 9. Trong mỗi trường hợp sau hãy tìm giá trị của m để: a) Điểm M(1;0) thuộc đường thẳng mx – 5y = 7; b) Điểm N(0;-3) thuộc đường thẳng 2,5x + my = -21 …

Lựa chọn câu để xem lời giải nhanh hơn

Trong mỗi trường hợp sau hãy tìm giá trị của \(m\) để:

LG a

Điểm \(M\left( {1;0} \right)\) thuộc đường thẳng \(mx – 5y = 7\)

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(M\left( {1; 0} \right)\) thuộc đường thẳng \(mx – 5y = 7\) nên ta có:

\(m.1 – 5.0 = 7\)\( \Leftrightarrow m = 7\)

Vậy với \(m = 7\) thì đường thẳng \(mx – 5y = 7\) đi qua điểm \(M\left( {1;0} \right)\)

LG b

Điểm \(N\left( {0; – 3} \right)\) thuộc đường thẳng \(2,5x + my = -21\)

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(N\left( {0; – 3} \right)\) thuộc đường thẳng \(2,5x + my = -21\) nên ta có: \(2,5.0 + m.\left( { – 3} \right) =  – 21\) \( \Leftrightarrow m = 7\)

Vậy với \(m = 7\) thì đường thẳng \(2,5x + my = -21\) đi qua \(N\left( {0; – 3} \right)\)

LG c

Điểm \(P\left( {5; – 3} \right)\) thuộc đường thẳng  \(mx + 2y = -1\)

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(P\left( {5; – 3} \right)\) thuộc đường thẳng \(mx + 2y =  – 1\) nên  ta có: \(m.5 +2.\left( { – 3} \right) =  – 1\) \( \Leftrightarrow m = 1\)

Vậy với \(m = 1\) thì đường thẳng \(mx + 2y =  – 1\) đi qua điểm \(P\left( {5; – 3} \right)\)

Vui lòng nhập mật khẩu để tiếp tục

test123

LG d

Điểm \(P\left( {5; – 3} \right)\) thuộc đường thẳng \(3x – my = 6\).

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(P\left( {5; – 3} \right)\) thuộc đường thẳng \(3x – my = 6\) nên ta có: \(3.5 – m.\left( { – 3} \right) = 6 \Leftrightarrow 3m =  – 9\) \( \Leftrightarrow m =  – 3\)

Vậy với \(m= – 3\) thì đường thẳng \(3x – my = 6\) đi qua điểm \(P\left( {5; – 3} \right)\)

LG e

Điểm \(Q\left( {0,5; – 3} \right)\) thuộc đường thẳng \(mx + 0y = 17,5\)

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(Q\left( {0,5; – 3} \right)\) thuộc đường thẳng \(mx + 0y = 17,5\) nên ta có: \(m.0,5 + 0.\left( { – 3} \right) = 17,5 \Leftrightarrow m = 35\)

Vậy với \(m = 35\) thì đường thẳng \(mx + 0y = 17,5\) đi qua điểm \(Q\left( {0,5; – 3} \right)\)

LG f

Điểm \(S\left( {4;0,3} \right)\) thuộc đường thẳng \(0x + my = 1,5\)

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(S\left( {4;0,3} \right)\) thuộc đường thẳng \(0x + my = 1,5\) nên ta có:  \(0.4 + m.0,3 = 1,5 \Leftrightarrow m = 5\)

Vậy với \(m = 5\) thì đường thẳng \(0x + my = 1,5\) đi qua điểm \(S\left( {4;0,3} \right)\)

LG g

Điểm \(A\left( {2; – 3} \right)\) thuộc đường thẳng \((m – 1)x + (m + 1)y = 2m + 1\)

Phương pháp giải:

Sử dụng:

– Điểm \(M(x_0;y_0)\) thuộc đường thẳng \(ax+by=c\) \( \Leftrightarrow ax_0+by_0=c\)

Lời giải chi tiết:

Điểm \(A\left( {2; – 3} \right)\) thuộc đường thẳng \(\left( {m – 1} \right)x + \left( {m + 1} \right)y = 2m + 1\) nên  ta có:

\(\eqalign{
& 2\left( {m – 1} \right) + \left( {m + 1} \right).\left( { – 3} \right) = 2m + 1 \cr 
& \Leftrightarrow 2m – 2 – 3m – 3 = 2m + 1 \cr 
& \Leftrightarrow 3m + 6 = 0 \cr 
& \Leftrightarrow m = – 2 \cr} \)

Vậy với \(m = -2\) thì đường thẳng \(\left( {m – 1} \right)x + \left( {m + 1} \right)y = 2m + 1\) đi qua điểm \(A\left( {2; – 3} \right)\).

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE