Giải bài 3.7 trang 34 sách bài tập toán 8 – Kết nối tri thức với cuộc sống

Tính các góc của hình thang ABCD (AB,CD là hai đáy) biết (widehat A = 2widehat D), (widehat B = widehat C + 40^circ ).

Đề bài

Tính các góc của hình thang ABCD (AB,CD là hai đáy) biết \(\widehat A = 2\widehat D\), \(\widehat B = \widehat C + 40^\circ \).

Phương pháp giải – Xem chi tiết

Sử dụng tính chất của hình thang cân và áp dụng định lí tổng các góc trong một tứ giác.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Trong hình thang ABCD có: \(\widehat A\) và \(\widehat D\) là hai góc bù nhau nên ta có \(\widehat A + \widehat D = 180^\circ \).

Mà \(\widehat A = 2\widehat D\) nên \(2\widehat D + \widehat D = 180^\circ \), suy ra \(\widehat D = 60^\circ \).

Do đó \(\widehat A = 2\widehat D = 2.60^\circ  = 120^\circ \).

Tương tự \(\widehat B\) và \(\widehat C\) là hai góc bù nhau nên ta có \(\widehat B + \widehat C = 180^\circ \).

Mà \(\widehat B = \widehat C + 40^\circ \) nên \(\widehat C + 40^\circ  + \widehat C = 180^\circ \) hay \(2\widehat C = 140^\circ \), suy ra \(\widehat C = 70^\circ \).

Do đó \(\widehat B = \widehat C + 40^\circ  = 70^\circ  + 40^\circ  = 110^\circ \).

Vậy hình thang ABCD có \(\widehat A = 120^\circ \); \(\widehat B = 110^\circ \); \(\widehat C = 70^\circ \); \(\widehat D = 60^\circ \).

TẢI APP ĐỂ XEM OFFLINE

SBT TOÁN TẬP 2 – KẾT NỐI TRI THỨC VỚI CUỘC SỐNG