Giải bài 7.19 trang 34 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho tứ diện đều \(ABCD\) có độ dài các cạnh bằng \(a\).

Đề bài

Cho tứ diện đều \(ABCD\) có độ dài các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(CD\), kẻ \(AH\) vuông góc với \(BM\) tại \(H\).

a) Chứng minh rằng \(AH \bot \left( {BCD} \right)\).

b) Tính côsin của góc giữa mặt phẳng \(\left( {BCD} \right)\) và mặt phẳng \(\left( {ACD} \right)\).

Phương pháp giải – Xem chi tiết

a) Chứng minh \(CD \bot \left( {ABM} \right) \Rightarrow AH \bot CD\)

Kết hợp \(AH \bot BM \Rightarrow AH \bot \left( {BCD} \right)\)

b) Tính côsin của góc giữa mặt phẳng \(\left( {BCD} \right)\) và mặt phẳng \(\left( {ACD} \right)\).

Tìm giao tuyến của mặt phẳng \(\left( {BCD} \right)\) và mặt phẳng \(\left( {ACD} \right)\) là \(CD\).

Nhận xét \(AM \bot CD,BM \bot CD\)

Suy ra góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) bằng \(\widehat {AMB}\).

Tính \(\widehat {AMB}\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Vì \(M\) là trung điểm của \(CD\) nên \(CD \bot BM\), \(CD \bot AM\), do đó \(CD \bot \left( {ABM} \right)\), suy ra \(CD \bot AH\), ta lại có \(AH \bot BM\) nên \(AH \bot \left( {BCD} \right)\).

b) Vì \(AM \bot CD,BM \bot CD\) nên góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) bằng góc giữa hai đường thẳng \(AM\) và \(BM\), mà \(\left( {AM,BM} \right) = \widehat {AMB}\) nên góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\) bằng \(\widehat {AMB}\).

 

Ta có: \(HM = \frac{1}{3}BM = \frac{{a\sqrt 3 }}{6}\) và \(AM = \frac{{a\sqrt 3 }}{2}\), tam giác \(AHM\) vuông tại \(H\) nên \({\rm{cos}}\widehat {AMB} = \frac{{HM}}{{AM}} = \frac{1}{3}\).

TẢI APP ĐỂ XEM OFFLINE