Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều

Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.

Đề bài

Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách  từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.

Phương pháp giải – Xem chi tiết

Phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\), trong đó tiêu điểm là \(F\left( {\frac{p}{2};0} \right)\) và phương trình đường chuẩn là: \(x + \frac{p}{2} = 0\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)

Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)

Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)

Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)

TẢI APP ĐỂ XEM OFFLINE