Câu 12 trang 225 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số (un) xác định bởi

\({u_1} = 3\,\text{ và }\,{u_n} = 4{u_{n – 1}} – 1\) với mọi n ≥ 2

Chứng minh rằng :

Vui lòng nhập mật khẩu để tiếp tục

test321

LG a

\({u_n} = {{{2^{2n + 1}} + 1} \over 3}\)  (1)  với mọi số nguyên n ≥ 1

Lời giải chi tiết:

Với n = 1 ta có \({u_1} = 3 = {{{2^3} + 1} \over 3}\)

(1) đúng với n = 1

Giả sử (1) đúng với n = k tức là ta có : \({u_k} = {{{2^{2k + 1}} + 1} \over 3}\)

Ta chứng minh (1) đúng khi n=k+1 hay \({u_{k + 1}} = \dfrac{{{2^{2\left( {k + 1} \right) + 1}} + 1}}{3}\)

Với n = k + 1 ta có :

\(\eqalign{  & {u_{k + 1}} = 4{u_k} – 1 = 4.{{{2^{2k + 1}} + 1} \over 3} – 1 \cr &= {{4\left( {{2^{2k + 1}} + 1} \right) – 3} \over 3}  \cr  &  = {{{2^{2k + 3}} + 1} \over 3} = {{{2^{2\left( {k + 1} \right)+1}} + 1} \over 3} \cr} \)

Vậy (1) đúng với n = k + 1 do đó (1) đúng với ∀ n ≥ 1

LG b

(u­n) là môt dãy số tăng.

Lời giải chi tiết:

Ta có:

\(\eqalign{  & {u_{n + 1}} – {u_n} = {{{2^{2n + 3}} + 1} \over 3} – {{{2^{2n + 1}} + 1} \over 3} = {{{2^{2n + 1}}\left( {{2^2} – 1} \right)} \over 3}  \cr  &  = {2^{2n + 1}} > 0 \Rightarrow {u_{n + 1}} > {u_n} \cr} \)

⇒ (un) là dãy số tăng.

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO