5. Đề thi học kì 2 – Đề số 4

Đề bài

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1 :

Tính giá trị của biểu thức \(A = \frac{{{{12}^{5 + \sqrt 3 }}}}{{{2^{5 + 2\sqrt 3 }}{{.3}^{7 + \sqrt 3 }}}}\):

  • A.
    \(288\)
  • B.
    \(\frac{{32}}{9}\)
  • C.
    \(\frac{2}{9}\)
  • D.
    \(18\)
Câu 2 :

Trong các hình sau, hình nào là dạng đồ thị của hàm số \(y = {\log _a}x,0 < a < 1\)

  • A.
    (I).
  • B.

    (II).

  • C.
    (IV).
  • D.
    (III).
Câu 3 :

Cho hình chóp \(SABC\) có \(SA \bot \left( {ABC} \right).\) Gọi \(H,{\rm{ }}K\) lần lượt là trực tâm các tam giác \(SBC\) và\(ABC\). Mệnh đề nào sai trong các mệnh đề sau?

  • A.
    \(BC \bot \left( {SAH} \right).\)
  • B.
    \(HK \bot \left( {SBC} \right).\)
  • C.
    \(BC \bot \left( {SAB} \right).\)
  • D.

    \(SH,{\rm{ }}AK{\rm{ }} , {\rm{ }}BC\) đồng quy tại một điểm

Câu 4 :

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một và SA = 3a, SB = a, SC = 2a. Khoảng cách từ A đến BC bằng?

  • A.

    \(\frac{{3a\sqrt 2 }}{2}\).

  • B.

    \(\frac{{7a\sqrt 5 }}{5}\).

  • C.

    \(\frac{{8a\sqrt 3 }}{3}\).

  • D.

    \(\frac{{5a\sqrt 6 }}{6}\).

Câu 5 :

Tại một cuộc hội thảo quốc tế có 50 nhà khoa học trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người dự hội thảo. Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc tiếng Pháp là:

  • A.
    \(\frac{{47}}{{50}}\)
  • B.
    \(\frac{{37}}{{50}}\)
  • C.
    \(\frac{{39}}{{50}}\)
  • D.
    \(\frac{{41}}{{50}}\)
Câu 6 :

Cho hàm số \(y =  – {x^3} + 3x – 2\) có đồ thị \(\left( C \right).\)Phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung là

  • A.
    \(y =  – 2x + 1\)
  • B.
    \(y = 2x + 1\)
  • C.
    \(y = 3x – 2\)
  • D.
    \(y =  – 3x – 2\)
Câu 7 :

Cho hàm số \(y = {\sin ^2}x\). Khi đó đạo hàm y’ là

  • A.
    \(y’ = {\cos ^2}x\)
  • B.
    \(y’ = \sin 2x\)
  • C.
    \(y’ = \frac{{ – 3}}{{{{\sin }^2}x}} + 1\)
  • D.
    \(y’ = \frac{3}{{{{\sin }^2}x}}\)
Câu 8 :

Hàm số \(y = \sqrt {2 + 2{x^2}} \)có đạo hàm \(y’ = \frac{{a + bx}}{{\sqrt {2 + 2{x^2}} }}\). Khi đó \(S = a – 2b\) có kết quả bằng

  • A.
    \(S =  – 4\)
  • B.
    \(S = 10\)
  • C.
    \(S =  – 6\)
  • D.
    \(S = 8\)
Câu 9 :

Hàm số \(y = \frac{{{x^2} + x}}{{x – 1}}\)có đạo hàm \(y’ = \frac{{a{x^2} + bx + c}}{{{{(x – 1)}^2}}}\). Khi đó \(S = a + b + c\) có kết quả là:

  • A.
    1
  • B.
    2
  • C.
    5
  • D.
    2
Câu 10 :

Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^2} + 1\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Vận tốc tức thời của chất điểm tại thời điểm \(t = 3s\)bằng

  • A.
    \(1m/s.\)
  • B.
    \(6m/s.\)
  • C.
    \(4m/s.\)
  • D.
    \(0m/s.\)
Câu 11 :

Hai người cùng bắn vào 1 bia. Người thứ nhất có xác suất bắn trúng là 60%, xác suất bắn trúng của người thứ 2 là 70%. Xác suất để cả hai người cùng bắn trật bằng:

  • A.
    0,56
  • B.
    0,21
  • C.
    0,42
  • D.
    0,48
Câu 12 :

Hàm số \(y = {x^5}\) có đạo hàm là:

  • A.
    \(y’ = 5{x^6}\)
  • B.
    \(y’ = 4{x^5}\)
  • C.
    \(y’ = 5x\)
  • D.
    \(y’ = 5{x^4}\)
Phần II. Câu trắc nghiệm đúng sai
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho mẫu số liệu về thời gian (phút) đi từ nhà đến trường của một số học sinh như sau:

a) Cỡ mẫu của mẫu số liệu = 40

Đúng
Sai

b) Mốt của mẫu số liệu thuộc nhóm \(\left[ {20;25} \right)\)

Đúng
Sai

c) Mốt của mẫu số liệu thuộc nhóm \(\left[ {30;35} \right)\)

Đúng
Sai

d)  Mốt của mẫu số liệu là \({M_0} = 22,08\)

Đúng
Sai

Câu 2 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho hàm số có đồ thị (C): \(y = f(x) = \frac{{x + 1}}{{3x}}(C)\)

a) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là: \(y = 9x – 2\)

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox là là\(y =  – \frac{1}{3}x – \frac{1}{3}\)

Đúng
Sai

c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y =  – 3x + \frac{7}{3}\)

Đúng
Sai

d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k =  – \frac{1}{3}\) là \(y =  – \frac{1}{3}x + 1\) và \(y =  – \frac{1}{3}x – \frac{1}{3}\)

Đúng
Sai

Câu 3 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm của cạnh BC.  AH, IJ là đường cao tam giác AID.

a) \(BC \bot (AID)\)

Đúng
Sai

b) \(AH \bot (BCD)\)

Đúng
Sai

c) IJ là đường vuông góc chung của AD và BC

Đúng
Sai

d) H là trọng tâm tam giác BCD

Đúng
Sai

Câu 4 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu. Chọn ngẫu nhiên một học sinh của tỉnh X và một học sinh của tỉnh Y. Giả thiết rằng chất lượng học tập của hai tỉnh là độc lập

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là\(0,7809\)

Đúng
Sai

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là \(0,0091\)

Đúng
Sai

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là \(0,1818\)

Đúng
Sai

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là \(0,9909\)

Đúng
Sai

Phần III. Câu trắc nghiệm trả lời ngắn.
Thí sinh trả lời từ câu 1 đến câu 6
Câu 1 :

Tính giới hạn: \(I = \mathop {lim}\limits_{x \to  – 3} \frac{{{x^2} + 2x – 3}}{{{x^2} + 5x + 6}}\)

Câu 2 :

Cho hàm số : \(y = 5{x^4} – 3{x^3} + 6x – \sqrt 7 \). Tính \(f’\left( 0 \right)\).

Câu 3 :

Cho hình chóp tứ giác đều\(S.ABCD\)có tất cả các cạnh bằng \(a\). Tính khoảng cách từ đỉnh \(S\) đến mặt phẳng \((ABCD).\)

Câu 4 :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\).Cạnh bên \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = a\sqrt 2 \).Góc giữa đường thẳng \(SC\)và mặt phẳng \(\left( {ABCD} \right)\)bằng

Câu 5 :

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) với \(a,b,c \in \mathbb{R}\). Biết rằng đồ thị hàm số đi qua hai điểm \(A\left( {1; – 3} \right)\) và \(B\left( {2;3} \right)\), đồng thời tiếp tuyến của đồ thị tại điểm có hoành độ bằng \( – 1\) có hệ số góc bằng 2. Tính tổng \(S = a + b + c\).

Câu 6 :

Cho hàm số \(y = \frac{{x – 2}}{{x + 3}}\) có đồ thị \(\left( C \right).\) Tìm điểm \(M\) trên đồ thị \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)tạo với hai trục tọa độ một tam giác có diện tích bằng \(\frac{{18}}{5}.\)

Lời giải và đáp án

Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1 :

Tính giá trị của biểu thức \(A = \frac{{{{12}^{5 + \sqrt 3 }}}}{{{2^{5 + 2\sqrt 3 }}{{.3}^{7 + \sqrt 3 }}}}\):

  • A.
    \(288\)
  • B.
    \(\frac{{32}}{9}\)
  • C.
    \(\frac{2}{9}\)
  • D.
    \(18\)

Đáp án : B

Phương pháp giải :

Sử dụng công thức lũy thừa

Lời giải chi tiết :

\(A = \frac{{{{12}^{5 + \sqrt 3 }}}}{{{2^{5 + 2\sqrt 3 }}{{.3}^{7 + \sqrt 3 }}}} = \frac{{{4^{5 + \sqrt 3 }}{{.3}^{5 + \sqrt 3 }}}}{{{2^{5 + 2\sqrt 3 }}{{.3}^{7 + \sqrt 3 }}}} = \frac{{{2^{10 + 2\sqrt 3 }}{{.3}^{5 + \sqrt 3 }}}}{{{2^{5 + 2\sqrt 3 }}{{.3}^{7 + \sqrt 3 }}}} = \frac{{{2^5}}}{{{3^2}}} = \frac{{32}}{9}\)

Đáp án B.

Câu 2 :

Trong các hình sau, hình nào là dạng đồ thị của hàm số \(y = {\log _a}x,0 < a < 1\)

  • A.
    (I).
  • B.

    (II).

  • C.
    (IV).
  • D.
    (III).

Đáp án : B

Phương pháp giải :

Hàm số \(y = {\log _a}x\) có đồ thị luôn đi qua điểm (1;0) và nghịch biến khi 0 <a<1

Lời giải chi tiết :

Do 0<a<1 nên đồ thị hàm số có chiều đi xuống từ trái qua phải

Đồ thị luôn đi qua điểm (1;0)

Đáp án B.

Câu 3 :

Cho hình chóp \(SABC\) có \(SA \bot \left( {ABC} \right).\) Gọi \(H,{\rm{ }}K\) lần lượt là trực tâm các tam giác \(SBC\) và\(ABC\). Mệnh đề nào sai trong các mệnh đề sau?

  • A.
    \(BC \bot \left( {SAH} \right).\)
  • B.
    \(HK \bot \left( {SBC} \right).\)
  • C.
    \(BC \bot \left( {SAB} \right).\)
  • D.

    \(SH,{\rm{ }}AK{\rm{ }} , {\rm{ }}BC\) đồng quy tại một điểm

Đáp án : C

Phương pháp giải :

Sử dụng định lý đường thẳng vuông góc mặt phẳng

Lời giải chi tiết :

a)

\(\left\{ \begin{array}{l}BC \bot SA\,\,(Do\,\,SA \bot (ABC))\\BC \bot SH\\SA,SH \subset (SAH)\\SA \cap SH\end{array} \right. \Rightarrow BC \bot (SAH)\)

b) \(\left\{ \begin{array}{l}CK \bot SA\,\,\\CK \bot AB\\SA,AB \subset (SAB)\\SA \cap AB\end{array} \right. \Rightarrow CK \bot (SAB) \Rightarrow CK \bot SB\)

Lại có: \(\left\{ \begin{array}{l}SB \bot CK – cmt\,\,\\SB \bot CH\\CH,CK \subset (CKH)\\CH \cap CK\end{array} \right. \Rightarrow SB \bot (CKH) \Rightarrow SB \bot HK\)

Ta có: \(\left\{ \begin{array}{l}HK \bot SB – cmt\,\,\\HK \bot BC\,(Do\,BC \bot (SAB))\\SB,BC \subset (SBC)\\SB \cap BC\end{array} \right. \Rightarrow HK \bot (SBC)\)

c)Do \(CK \bot (SAB)\)nên BC không thể vuông góc với (SAB)

d) Gọi M là giao điểm của SH và BC. Do \(BC \bot (SAH)\) nên \(BC \bot AM\) hay đường thẳng AM trùng với đường thẳng AK. Hay SH, AK, BC đồng quy

Đáp án C.

Câu 4 :

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một và SA = 3a, SB = a, SC = 2a. Khoảng cách từ A đến BC bằng?

  • A.

    \(\frac{{3a\sqrt 2 }}{2}\).

  • B.

    \(\frac{{7a\sqrt 5 }}{5}\).

  • C.

    \(\frac{{8a\sqrt 3 }}{3}\).

  • D.

    \(\frac{{5a\sqrt 6 }}{6}\).

Đáp án : B

Phương pháp giải :

Sử dụng phương pháp tính khoảng cách từ đường thẳng tới mặt phẳng

Lời giải chi tiết :

Dựng \(AH \bot BC \Rightarrow d(A,BC) = AH\)

\(\begin{array}{l}\left\{ \begin{array}{l}SA \bot (SBC)\\AH \bot BC\end{array} \right. \Rightarrow SA \bot BC\\ \Rightarrow BC \bot (SAH) \Rightarrow BC \bot SH\end{array}\)

Xét tam giác SBC vuông tại S có SH là đường cao ta có:

\(\begin{array}{l}\frac{1}{{S{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{4{a^2}}} = \frac{5}{{4{a^2}}} \Rightarrow S{H^2} = \frac{{4{a^2}}}{5}\\ \Rightarrow SH = \frac{{2a\sqrt 5 }}{5}\end{array}\)

Ta có: \(SA \bot (SBC) \Rightarrow SA \bot SH \Rightarrow \Delta SAH\)vuông tại S

Áp dụng hệ thức lượng trong \(\Delta SAH\) vuông tại S ta có:

\(A{H^2} = S{A^2} + S{H^2} = 9{a^2} + \frac{{4{a^2}}}{5} = \frac{{49{a^2}}}{5} \Rightarrow AH = \frac{{7a\sqrt 5 }}{5}\)

Đáp án B.

Câu 5 :

Tại một cuộc hội thảo quốc tế có 50 nhà khoa học trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người dự hội thảo. Xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc tiếng Pháp là:

  • A.
    \(\frac{{47}}{{50}}\)
  • B.
    \(\frac{{37}}{{50}}\)
  • C.
    \(\frac{{39}}{{50}}\)
  • D.
    \(\frac{{41}}{{50}}\)

Đáp án : A

Phương pháp giải :

Sử dụng quy tắc cộng xác suất

Lời giải chi tiết :

Gọi A là biến cố “Người được chọn thành thạo tiếng Anh”; B là biến cố “Người được chọn thành thạo tiếng Pháp”.

Biến cố: “Người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp” là biến cố hợp của A và B.

Khi đó P(A) = \(P(A) = \frac{{31}}{{50}};P(B) = \frac{{21}}{{50}};P(AB) = \frac{5}{{50}} = \frac{1}{{10}}\) 

Ta có: P(A ∪ B) = P(A) + P(B) – P(AB) = \(\frac{{31}}{{50}} + \frac{{21}}{{50}} – \frac{1}{{10}} = \frac{{47}}{{50}}\)

Vậy xác suất để người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc tiếng Pháp là \(\frac{{47}}{{50}}\)

Đáp án A.

Câu 6 :

Cho hàm số \(y =  – {x^3} + 3x – 2\) có đồ thị \(\left( C \right).\)Phương trình tiếp tuyến của \(\left( C \right)\) tại giao điểm của \(\left( C \right)\) với trục tung là

  • A.
    \(y =  – 2x + 1\)
  • B.
    \(y = 2x + 1\)
  • C.
    \(y = 3x – 2\)
  • D.
    \(y =  – 3x – 2\)

Đáp án : C

Phương pháp giải :

Đạo hàm của hàm số\(y = f(x)\) tại điểm x0 là hệ số góc của tiếp tuyến với đồ thị (C) của hàm số tại điểm  \({M_0}({x_0};f({x_0}))\)

Khi đó phương trình tiếp tuyến của (C) tại điểm M0 là: \(y = f'({x_0})(x – {x_0}) + f({x_0})\)

Lời giải chi tiết :

\(y’ = \left( { – {x^3} + 3x – 2} \right)’ =  – 3{x^2} + 3\)

Giao điểm của \(\left( C \right)\) với trục tung là \(M(0; – 2)\)

Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M(0; – 2)\) là: \(y = y'(0)(x – 0) + ( – 2) = 3x – 2\)

Đáp án C.

Câu 7 :

Cho hàm số \(y = {\sin ^2}x\). Khi đó đạo hàm y’ là

  • A.
    \(y’ = {\cos ^2}x\)
  • B.
    \(y’ = \sin 2x\)
  • C.
    \(y’ = \frac{{ – 3}}{{{{\sin }^2}x}} + 1\)
  • D.
    \(y’ = \frac{3}{{{{\sin }^2}x}}\)

Đáp án : B

Phương pháp giải :

Sử dụng công thức đạo hàm của hàm hợp.

Lời giải chi tiết :

\(y’ = \left( {{{\sin }^2}x} \right)’ = 2\sin x.c{\rm{os}}x = \sin 2x\)

Đáp án B.

Câu 8 :

Hàm số \(y = \sqrt {2 + 2{x^2}} \)có đạo hàm \(y’ = \frac{{a + bx}}{{\sqrt {2 + 2{x^2}} }}\). Khi đó \(S = a – 2b\) có kết quả bằng

  • A.
    \(S =  – 4\)
  • B.
    \(S = 10\)
  • C.
    \(S =  – 6\)
  • D.
    \(S = 8\)

Đáp án : A

Phương pháp giải :

Sử dụng công thức đạo hàm của hàm hợp

Lời giải chi tiết :

\(\begin{array}{l}y’ = \left( {\sqrt {2 + 2{x^2}} } \right)’ = \frac{{\left( {2 + 2{x^2}} \right)’}}{{2\sqrt {2 + 2{x^2}} }} = \frac{{4x}}{{2\sqrt {2 + 2{x^2}} }} = \frac{{2x}}{{\sqrt {2 + 2{x^2}} }}\\ \Rightarrow a = 0,b = 2\\ \Rightarrow S = a – 2b =  – 4\end{array}\)

Đáp án A.

Câu 9 :

Hàm số \(y = \frac{{{x^2} + x}}{{x – 1}}\)có đạo hàm \(y’ = \frac{{a{x^2} + bx + c}}{{{{(x – 1)}^2}}}\). Khi đó \(S = a + b + c\) có kết quả là:

  • A.
    1
  • B.
    2
  • C.
    5
  • D.
    2

Đáp án : B

Phương pháp giải :

Sử dụng công thức đạo hàm của hàm hợp

Lời giải chi tiết :

\(\begin{array}{l}y’ = \left( {\frac{{{x^2} + x}}{{x – 1}}} \right)’ = \frac{{\left( {{x^2} + x} \right)'(x – 1) – ({x^2} + x)(x – 1)’}}{{{{(x – 1)}^2}}} = \frac{{(2x + 1)(x – 1) – ({x^2} + x)}}{{{{(x – 1)}^2}}} = \frac{{{x^2} – 2x – 1}}{{{{(x – 1)}^2}}}\\ \Rightarrow a = 1;b =  – 2,c =  – 1\\ \Rightarrow S = a + b + c =  – 2\end{array}\)

Đáp án B.

Câu 10 :

Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^2} + 1\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Vận tốc tức thời của chất điểm tại thời điểm \(t = 3s\)bằng

  • A.
    \(1m/s.\)
  • B.
    \(6m/s.\)
  • C.
    \(4m/s.\)
  • D.
    \(0m/s.\)

Đáp án : B

Phương pháp giải :

Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

Lời giải chi tiết :

\(s’\left( t \right) = \left( {{t^2} + 1} \right)’ = 2t\)

Vận tốc tức thời của chất điểm tại thời điểm \(t = 3s\)bằng \(v\left( 3 \right) = 2.3 = 6(m/s)\)

Đáp án B.

Câu 11 :

Hai người cùng bắn vào 1 bia. Người thứ nhất có xác suất bắn trúng là 60%, xác suất bắn trúng của người thứ 2 là 70%. Xác suất để cả hai người cùng bắn trật bằng:

  • A.
    0,56
  • B.
    0,21
  • C.
    0,42
  • D.
    0,48

Đáp án : C

Phương pháp giải :

Sử dụng quy tắc nhân xác suất \(P(AB) = P(A).P(B)\)

Lời giải chi tiết :

Gọi A là biến cố “người thứ nhất bắn trúng”

B là biến cố “người thứ hai bắn trúng”

AB là biến cố “cả hai người đều bắn trúng”

Suy ra \(P(A) = 0,6;P(B) = 0,7\)

Ta có: \(P(AB) = 0,6.0,7 = 0,42\)

Đáp án C.

Câu 12 :

Hàm số \(y = {x^5}\) có đạo hàm là:

  • A.
    \(y’ = 5{x^6}\)
  • B.
    \(y’ = 4{x^5}\)
  • C.
    \(y’ = 5x\)
  • D.
    \(y’ = 5{x^4}\)

Đáp án : D

Phương pháp giải :

Sử dụng công thức đạo hàm của hàm hợp

Lời giải chi tiết :

\(y’ = \left( {{x^5}} \right)’ = 5{x^4}\)

Đáp án D.

Phần II. Câu trắc nghiệm đúng sai
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho mẫu số liệu về thời gian (phút) đi từ nhà đến trường của một số học sinh như sau:

a) Cỡ mẫu của mẫu số liệu = 40

Đúng
Sai

b) Mốt của mẫu số liệu thuộc nhóm \(\left[ {20;25} \right)\)

Đúng
Sai

c) Mốt của mẫu số liệu thuộc nhóm \(\left[ {30;35} \right)\)

Đúng
Sai

d)  Mốt của mẫu số liệu là \({M_0} = 22,08\)

Đúng
Sai

Đáp án

a) Cỡ mẫu của mẫu số liệu = 40

Đúng
Sai

b) Mốt của mẫu số liệu thuộc nhóm \(\left[ {20;25} \right)\)

Đúng
Sai

c) Mốt của mẫu số liệu thuộc nhóm \(\left[ {30;35} \right)\)

Đúng
Sai

d)  Mốt của mẫu số liệu là \({M_0} = 22,08\)

Đúng
Sai

Phương pháp giải :

Sử dụng công thức tính Mốt

Lời giải chi tiết :

Tần số lớn nhất là 12 nên nhóm chứa mốt là nhóm [20; 25). Ta có j = 2, a2 = 20, m2 = 12, m1 = 7, m3 = 5, h = 25 – 20 = 5

Khi đó

\({M_0} = {a_2} + \frac{{{m_2} – {m_1}}}{{\left( {{m_2} – {m_1}} \right) + \left( {{m_2} – {m_3}} \right)}}.5 = 20 + \frac{{12 – 7}}{{(12 – 7) + (12 – 5)}}.5 = \frac{{265}}{{12}} \approx 22,08\)

Vậy Mo ≈ 22,08.

Câu 2 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho hàm số có đồ thị (C): \(y = f(x) = \frac{{x + 1}}{{3x}}(C)\)

a) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là: \(y = 9x – 2\)

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox là là\(y =  – \frac{1}{3}x – \frac{1}{3}\)

Đúng
Sai

c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y =  – 3x + \frac{7}{3}\)

Đúng
Sai

d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k =  – \frac{1}{3}\) là \(y =  – \frac{1}{3}x + 1\) và \(y =  – \frac{1}{3}x – \frac{1}{3}\)

Đúng
Sai

Đáp án

a) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là: \(y = 9x – 2\)

Đúng
Sai

b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox là là\(y =  – \frac{1}{3}x – \frac{1}{3}\)

Đúng
Sai

c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y =  – 3x + \frac{7}{3}\)

Đúng
Sai

d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k =  – \frac{1}{3}\) là \(y =  – \frac{1}{3}x + 1\) và \(y =  – \frac{1}{3}x – \frac{1}{3}\)

Đúng
Sai

Phương pháp giải :

Bước 1: Gọi M(x0; f(x0)) là tọa độ tiếp điểm của tiếp tuyến của (C) thì f'(x0) = k

Bước 2: Giải phương trình f'(x0) = k với ẩn là x0.

Bước 3: Phương trình tiếp tuyến của (C) có dạng y = k(x – x0) + f(x0).

Lời giải chi tiết :

\(y’ = f'(x) = \left( {\frac{{x + 1}}{{3x}}} \right)’ = \frac{{ – 1}}{{3{x^2}}}\)

Câu 3 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm của cạnh BC.  AH, IJ là đường cao tam giác AID.

a) \(BC \bot (AID)\)

Đúng
Sai

b) \(AH \bot (BCD)\)

Đúng
Sai

c) IJ là đường vuông góc chung của AD và BC

Đúng
Sai

d) H là trọng tâm tam giác BCD

Đúng
Sai

Đáp án

a) \(BC \bot (AID)\)

Đúng
Sai

b) \(AH \bot (BCD)\)

Đúng
Sai

c) IJ là đường vuông góc chung của AD và BC

Đúng
Sai

d) H là trọng tâm tam giác BCD

Đúng
Sai

Phương pháp giải :

Sử dụng định lý đường thẳng vuông góc với mặt phẳng

Lời giải chi tiết :

a) Vì tam giác ABC cân tại A, AI là trung tuyến nên AI đồng thời là đường cao hay AI \( \bot \)

Vì tam giác BCD cân tại D, DI là trung tuyến nên DI đồng thời là đường cao hay DI \( \bot \) BC.

Có AI \( \bot \)BC và DI \( \bot \) BC nên BC \( \bot \) (AID).

b) Do AH là đường cao của tam giác AID nên AH \( \bot \)

Vì BC \( \bot \) (AID) nên BC \( \bot \) AH mà AH\( \bot \)DI nên AH \( \bot \) (BCD).

c) Vì BC \( \bot \)(AID) nên BC \( \bot \)IJ, mà IJ là đường cao của tam giác AID nên IJ \( \bot \) Do đó IJ là đường vuông góc chung của AD và BC.

d) Tam giác BCD cân nên H không là trọng tâm tam giác BCD

Câu 4 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Trong đợt kiểm tra cuối học kì II lớp 11 của các trường trung học phổ thông, thống kê cho thấy có 93% học sinh tỉnh X đạt yêu cầu; 87% học sinh tỉnh Y đạt yêu cầu. Chọn ngẫu nhiên một học sinh của tỉnh X và một học sinh của tỉnh Y. Giả thiết rằng chất lượng học tập của hai tỉnh là độc lập

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là\(0,7809\)

Đúng
Sai

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là \(0,0091\)

Đúng
Sai

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là \(0,1818\)

Đúng
Sai

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là \(0,9909\)

Đúng
Sai

Đáp án

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là\(0,7809\)

Đúng
Sai

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là \(0,0091\)

Đúng
Sai

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là \(0,1818\)

Đúng
Sai

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là \(0,9909\)

Đúng
Sai

Phương pháp giải :

Sử dụng công thức nhân xác suất cho hai biến cố độc lập

Lời giải chi tiết :

Xác suất để học sinh tỉnh X không đạt yêu cầu là \(100\%  – 93\%  = 7\%  = 0,07\)

Xác suất để học sinh tỉnh Y không đạt yêu cầu là \(100\%  – 87\%  = 13\%  = 0,13\)

Gọi A là biến cố: “Học sinh tỉnh X đạt yêu cầu”

B là biến cố: “Học sinh tỉnh Y đạt yêu cầu”

Khi đó ta có: \(P(A) = 0,93;P(B) = 0,87;P(\overline A ) = 0,07;P(\overline B ) = 0,13\)

a) Xác suất để cả hai học sinh được chọn đều đạt yêu cầu là:

\(P(AB) = P(A).P(B) = 0,93.0,87 = 0,8091\)

b) Xác suất để cả hai học sinh được chọn đều không đạt yêu cầu là

\(P(\overline {AB} ) = P(\overline A ).P(\overline B ) = 0,07.0,13 = 0,0091\)

c) Xác suất để chỉ có đúng một học sinh được chọn đạt yêu cầu là:

\(P(A\overline B ) + P(\overline A B) = 0,93.0,13 + 0,07.0,87 = 0,1818\)

d) Xác suất để có ít nhất một trong hai học sinh được chọn đạt yêu cầu là:

\(P(A \cup B) = P(A) + P(B) – P(AB) = 0,93 + 0,87 – 0,8091 = 0,9909\)

Phần III. Câu trắc nghiệm trả lời ngắn.
Thí sinh trả lời từ câu 1 đến câu 6
Câu 1 :

Tính giới hạn: \(I = \mathop {lim}\limits_{x \to  – 3} \frac{{{x^2} + 2x – 3}}{{{x^2} + 5x + 6}}\)

Phương pháp giải :

Sử dụng phương pháp phân tích thành nhân tử

Lời giải chi tiết :

\(I = \mathop {lim}\limits_{x \to  – 3} \frac{{{x^2} + 2x – 3}}{{{x^2} + 5x + 6}} = \mathop {lim}\limits_{x \to  – 3} \frac{{(x + 3)(x – 1)}}{{(x + 3)(x + 2)}}\)

\( = \mathop {lim}\limits_{x \to  – 3} \frac{{x – 1}}{{x + 2}} = 4\)

Câu 2 :

Cho hàm số : \(y = 5{x^4} – 3{x^3} + 6x – \sqrt 7 \). Tính \(f’\left( 0 \right)\).

Phương pháp giải :

Sử dụng công thức tính đạo hàm của hàm hợp

Lời giải chi tiết :

\(\begin{array}{l}y’ = 20{x^3} – 9{x^2} + 6\\y'(0) = 6\end{array}\)

Câu 3 :

Cho hình chóp tứ giác đều\(S.ABCD\)có tất cả các cạnh bằng \(a\). Tính khoảng cách từ đỉnh \(S\) đến mặt phẳng \((ABCD).\)

Phương pháp giải :

\(d(S,(ABCD)) = SO\)

Lời giải chi tiết :

Gọi \(O\) là tâm của hình vuông \(ABCD.\) Suy ra \(SO \bot (ABCD)\) hay \(SO \bot BD\)

Xét hình vuông \(ABCD\) cạnh \(a,\) ta có \(AD = AB = a.\)

Suy ra \(BD = a\sqrt 2 \)(đường chéo hình vuông)\( \Rightarrow OD = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác vuông \(SDO\)vuông tại \(O,\) áp dụng định lý Pitago ta có: \(S{D^2} = S{O^2} + O{D^2} \Rightarrow S{O^2} = S{D^2} – O{D^2} = {a^2} – {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{{{a^2}}}{2} \Rightarrow SO = \frac{{a\sqrt 2 }}{2}\)

Vậy \(d(S,(ABCD)) = SO = \frac{{a\sqrt 2 }}{2}.\)

Câu 4 :

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\).Cạnh bên \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = a\sqrt 2 \).Góc giữa đường thẳng \(SC\)và mặt phẳng \(\left( {ABCD} \right)\)bằng

Phương pháp giải :

Sử dụng phương pháp xác định góc giữa đường thẳng và mặt phẳng

Lời giải chi tiết :

\(\left( {\widehat {SC,\left( {ABCD} \right)}} \right) = \left( {\widehat {SC,AC}} \right) = \widehat {SCA}\)

Tam giác \(SAC\) có \(SA \bot AC,SA = AC = a\sqrt 2 \) Suy ra \(\widehat {SCA} = {45^0}.\)

Câu 5 :

Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) với \(a,b,c \in \mathbb{R}\). Biết rằng đồ thị hàm số đi qua hai điểm \(A\left( {1; – 3} \right)\) và \(B\left( {2;3} \right)\), đồng thời tiếp tuyến của đồ thị tại điểm có hoành độ bằng \( – 1\) có hệ số góc bằng 2. Tính tổng \(S = a + b + c\).

Phương pháp giải :

Viết phương trình hàm số biết đồ thị hàm số đi qua A và B; đồng thời là tiếp tuyến có hoành độ bằng -1 có hệ số góc bằng 2.

Từ đó lập hệ phương trình 3 ẩn tương ứng

Lời giải chi tiết :

Đồ thị hàm số đi qua điểm \(A\left( {1; – 3} \right)\) nên \( – 3 = a + b + c\) \(\left( 1 \right)\)

Đồ thị hàm số đi qua điểm \(B\left( {2;3} \right)\) nên \(16a + 4b + c = 3\) \(\left( 2 \right)\)

Tiếp tuyến của đồ thị tại điểm có hoành độ bằng \( – 1\) có hệ số góc bằng 2 nên \(f’\left( { – 1} \right) = 2 \Leftrightarrow  – 4a – 2b =  – 2 \Leftrightarrow 2a + b = 1\) \(\left( 3 \right)\)

Từ \(\left( 1 \right)\), \(\left( 2 \right)\), \(\left( 3 \right)\) ta có hệ phương trình:

\(\left\{ \begin{array}{l}a + b + c =  – 3\\16a + 4b + c = 3\\2a + b =  – 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  – 3\\c =  – 1\end{array} \right.\)

Vậy \(S = 3\).

Câu 6 :

Cho hàm số \(y = \frac{{x – 2}}{{x + 3}}\) có đồ thị \(\left( C \right).\) Tìm điểm \(M\) trên đồ thị \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại \(M\)tạo với hai trục tọa độ một tam giác có diện tích bằng \(\frac{{18}}{5}.\)

Phương pháp giải :

Gọi tọa độ điểm M thuộc \(\left( C \right)\). Lập phương trình tính diện tích tam giác

Lời giải chi tiết :

Tập xác định \(D = \mathbb{R}\backslash \left\{ { – 3} \right\}\)

Gọi \(M\left( {a;\frac{{a – 2}}{{a + 3}}} \right) \in \left( C \right)\).

\(y’ = \frac{5}{{{{\left( {x + 3} \right)}^2}}}\)

Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\): \(y = \frac{5}{{{{\left( {a + 3} \right)}^2}}}\left( {x – a} \right) + \frac{{a – 2}}{{a + 3}}{\rm{  }}\left( \Delta  \right)\)

\(A = Ox \cap \Delta  \Rightarrow A\left( {\frac{{ – {a^2} + 4a + 6}}{5};0} \right)\)

\(B = Oy \cap \Delta  \Rightarrow B\left( {0;\frac{{{a^2} – 4a – 6}}{{{{\left( {a + 3} \right)}^2}}}} \right)\)

\(\begin{array}{l}{S_{OAB}} = \frac{1}{2}OA.OB \Leftrightarrow \frac{1}{2}\left| {\frac{{ – {a^2} + 4a + 6}}{5}} \right|.\left| {\frac{{{a^2} – 4a – 6}}{{{{\left( {a + 3} \right)}^2}}}} \right| = \frac{{18}}{5}\\ \Leftrightarrow {\left( {{a^2} – 4a – 6} \right)^2} = 36{\left( {a + 3} \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}{a^2} – 10a – 24 = 0\\{a^2} + 2a + 12 = 0:vn\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 12\\a =  – 2\end{array} \right.\end{array}\)

Vậy \(M\left( {12;\frac{2}{3}} \right)\) hoặc \(M\left( { – 2; – 4} \right).\)

TẢI APP ĐỂ XEM OFFLINE