Giải mục 2 trang 62 SGK Toán 9 tập 1 – Kết nối tri thức

a) Tính giá trị của căn thức (sqrt[3]{{5x – 1}}) tại (x = 0) và tại (x = – 1,4.) b) Rút gọn biểu thức (sqrt[3]{{{x^3} – 3{x^2} + 3x – 1}}.)

Đề bài

Trả lời câu hỏi Luyện tập 3 trang 62 SGK Toán 9 Kết nối tri thức

a) Tính giá trị của căn thức \(\sqrt[3]{{5x – 1}}\) tại \(x = 0\) và tại \(x = – 1,4.\)

b) Rút gọn biểu thức \(\sqrt[3]{{{x^3} – 3{x^2} + 3x – 1}}.\)

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

Để tính giá trị của \(\sqrt[3]{A}\) tại các giá trị của biến, ta thay giá trị của biến vào căn thức rồi tính giá trị biểu thức nhận được.

Đối với ý b, cần sử dụng hằng đẳng thức \({\left( {a – b} \right)^3} = {a^3} – 3{a^2}b + 3a{b^2} – {b^3}\) và \(\sqrt[3]{{{A^3}}} = A.\)

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

a) Tại \(x = 0\) ta có \(\sqrt[3]{{5.0 – 1}} = \sqrt[3]{{ – 1}} = – 1\)

Tại \(x = – 1,4\) ta có \(\sqrt[3]{{5.\left( { – 1,4} \right) – 1}} = \sqrt[3]{{ – 8}} = – 2\)

b) Ta có \(\sqrt[3]{{{x^3} – 3{x^2} + 3x – 1}} = \sqrt[3]{{{{\left( {x – 1} \right)}^3}}} = x – 1\)

TẢI APP ĐỂ XEM OFFLINE

Toán 9 tập 1 – Kết nối tri thức