Giải bài 7 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Tìm hệ số của \({x^5}\) trong khai triển của: \((2x + 3){(x – 2)^6}\)

Đề bài

Tìm hệ số của \({x^5}\) trong khai triển của: \((2x + 3){(x – 2)^6}\)

Phương pháp giải – Xem chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n – 1}}b + … + C_n^{n – 1}a{b^{n – 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{(ax)^k}{b^{n – k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n – k}{a^k}{b^{n – k}}\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Cách 1: Sử dụng tam giác Pascal, ta có:

\(\begin{array}{l}{(x – 2)^6} = {x^6} + 6{x^5}\left( { – 2} \right) + 15{x^4}{\left( { – 2} \right)^2} + 20{x^3}{\left( { – 2} \right)^3} + 15{x^2}{\left( { – 2} \right)^4} + 6x{\left( { – 2} \right)^5} + {\left( { – 2} \right)^6}\\ = {x^6} – 12{x^5} + 60{x^4} – 160{x^3} + 240{x^2} – 192x + 64\end{array}\)

\((2x + 3){(x – 2)^6} = (2x + 3)\left( {{x^6} – 12{x^5} + 60{x^4} – 160{x^3} + 240{x^2} – 192x + 64} \right)\)

Do đó hệ số của \({x^5}\)  là: \(2.60 + 3.( – 12) = 84\)

Cách 2: Theo công thức nhị thức Newton, ta có:

\({(x – 2)^6} = C_6^0{x^6} + C_6^1{x^5}\left( { – 2} \right) + … + C_6^k{x^{6 – k}}{\left( { – 2} \right)^k} + … + C_6^6{\left( { – 2} \right)^6}\)

\(\begin{array}{l}(2x + 3){(x – 2)^6} = 2C_6^0{x^7} + 2C_6^1{x^6}\left( { – 2} \right) + … + 2C_6^k{x^{7 – k}}{\left( { – 2} \right)^k} + … + 2C_6^6x{\left( { – 2} \right)^6}\\ + 3\left[ {C_6^0{x^6} + C_6^1{x^5}\left( { – 2} \right) + … + C_6^k{x^{6 – k}}{{\left( { – 2} \right)}^k} + … + C_6^6{{\left( { – 2} \right)}^6}} \right]\\ = 2C_6^0{x^7} + \left[ {2\left( { – 2} \right)C_6^1 + 3C_6^0} \right]{x^6} + … + \left[ {2{{\left( { – 2} \right)}^k}C_6^k + 3{{\left( { – 2} \right)}^{k – 1}}C_6^{k – 1}} \right]{x^{7 – k}} + \left[ {2{{\left( { – 2} \right)}^6}C_6^6 + 3C_6^5{{\left( { – 2} \right)}^5}} \right]x + 3C_6^6{\left( { – 2} \right)^6}.\end{array}\)

Số hạng chứa \({x^5}\) ứng với \(7 – k = 5\)hay \(k = 2\). Do đó hệ số của \({x^5}\)  là

\(2{\left( { – 2} \right)^2}C_6^2 + 3{\left( { – 2} \right)^1}C_6^1 = 84\)

TẢI APP ĐỂ XEM OFFLINE