Giải bài 6.28 trang 61 SGK Toán 8 – Cùng khám phá

Trong Hình 6.75, \(A\)là giao điểm của \(BE\) và \(CD\).

Đề bài

Trong Hình 6.75, \(A\)là giao điểm của \(BE\) và \(CD\).

a) Chứng minh rằng tam giác \(ABC\) đồng dạng với tam giác \(ADE\).

b) Tính độ dài \(x\) và \(y\).

 

Phương pháp giải – Xem chi tiết

Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Xét tam giác \(ABC\) và tam giác \(ADE\), ta có:

\(\widehat B = \widehat D\) (gt)

\(\widehat {BAC} = \widehat {DAE}\) (hai góc đối đỉnh)

=> \(\Delta ABC\) ∽ \(\Delta ADE\) (g-g)

b) Ta có tỉ số đồng dạng:

\(\begin{array}{l}\frac{{AB}}{{AD}} = \frac{{AC}}{{AE}} = \frac{{BC}}{{DE}}\\ \Leftrightarrow \frac{6}{4} = \frac{x}{8} = \frac{9}{y}\\ \Rightarrow x = 12;y = 6\end{array}\)

TẢI APP ĐỂ XEM OFFLINE