Giải bài 4 trang 65 SGK Toán 8 – Cánh diều

Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng

Đề bài

Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, BH, HC, CA. Chứng minh tứ giác MNPQ là hình chữ nhật.

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

Sử dụng định lý đường trung bình và dấu hiệu nhận biết của hình chữ nhật để chứng minh bài toán

Vui lòng nhập mật khẩu để tiếp tục

test321

Lời giải chi tiết

Vì M, N lần lượt là trung điểm của các đoạn thẳng AB, BH nên ta có:

MN là đường trung bình tam giác ABH \( \Rightarrow MN//AH\) mà \(AH \bot BC\) nên \(MN \bot BC\) (1)

Vì P, Q lần lượt là trung điểm của các đoạn thẳng CH, AC nên ta có:

PQ là đường trung bình tam giác AHC \( \Rightarrow PQ//AH\) mà \(AH \bot BC\) nên \(QP \bot BC\) (2)

Vì P, N lần lượt là trung điểm của các đoạn thẳng CH, BH nên ta có:

PN là đường trung bình tam giác BHC \( \Rightarrow PN//BC\) mà \(AH \bot BC\) nên \(PN \bot AH\)(3)

Vì M, Q lần lượt là trung điểm của các đoạn thẳng AB, AC nên ta có:

MQ là đường trung bình tam giác ABC \( \Rightarrow MQ//BC\) mà \(AH \bot BC\) nên \(MQ \bot AH\)(4)

Từ (1), (2), (3), (4) ta có \(\widehat {MNP} = \widehat {NPQ} = \widehat {PQM} = \widehat {QMN} = 90^\circ \)

Vậy tứ giác MNPQ là hình chữ nhật (dhnb).

TẢI APP ĐỂ XEM OFFLINE