Giải bài 122 trang 59 sách bài tập Toán 6 – Cánh Diều Tập 2

Thực hiện phép tính:

Đề bài

Thực hiện phép tính:

a) \(0,58\,.\,{7^2} – \left( { – 7} \right)\,.\,\left( { – 0,7} \right)\,.\,15,8;\)

b) \(0,05\,:\,0,5 + 7\,:\,0,7 + 0,9:0,009;\)

c) \(\frac{9}{{11}}\,.\,\frac{{92}}{{121}} + \frac{2}{{ – 121}}\,.\,\frac{9}{{11}}\, + \frac{{31}}{{121}}\,.\,\frac{9}{{11}};\)

d) \(\frac{{20\,212\,021}}{{2\,021}}\,.\,\frac{{2\,020}}{{20\,202\,020}}.\frac{{{2^3}}}{{{3^2}}}\,.\,\frac{{ – 3}}{{{2^2}}}\,\)

Phương pháp giải – Xem chi tiết

Áp dụng tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a)

\(\begin{array}{l}0,58\,.\,{7^2} – \left( { – 7} \right)\,.\,\left( { – 0,7} \right)\,.\,15,8\\ = 0,58\,.\,{7^2} – 7\,.\,0,7\,.\,15,8\\ = 0,58\,.\,{7^2} – 7\,.\,7\,.\,1,58\\ = {7^2}\left( {0,58 – 1,58} \right)\\ = {7^2}.( – 1)\\ =  – 49\end{array}\)

b)

 \(\begin{array}{l}0,05\,:\,0,5 + 7\,:\,0,7 + 0,9:0,009\\ = \frac{5}{{100}}:\frac{5}{{10}} + 7:\frac{7}{{10}} + \frac{9}{{10}}:\frac{9}{{1000}}\\ = \frac{5}{{100}}.\frac{{10}}{5} + 7.\frac{{10}}{7} + \frac{9}{{10}}.\frac{{1000}}{9}\\ = 0,1 + 10 + 100\\ = 110,1.\end{array}\)

c)

 \(\begin{array}{l}\frac{9}{{11}}\,.\,\frac{{92}}{{121}} + \frac{2}{{ – 121}}\,.\,\frac{9}{{11}}\, + \frac{{31}}{{121}}\,.\,\frac{9}{{11}}\\ = \frac{9}{{11}}\,.\,\left( {\frac{{92}}{{121}} + \frac{2}{{ – 121}}\,\, + \frac{{31}}{{121}}} \right)\\ = \frac{9}{{11}}\,.\,\left( {\frac{{92}}{{121}} + \frac{{ – 2}}{{121}}\,\, + \frac{{31}}{{121}}} \right)\\ = \frac{9}{{11}}\,.\,\frac{{92 + ( – 2) + 31}}{{121}}\\ = \frac{9}{{11}}\,.\,\frac{{121}}{{121}}\\ = \frac{9}{{11}}.\end{array}\)

d)

 \(\begin{array}{l}\frac{{20\,212\,021}}{{2\,021}}\,.\,\frac{{2\,020}}{{20\,202\,020}}.\frac{{{2^3}}}{{{3^2}}}\,.\,\frac{{ – 3}}{{{2^2}}}\,\\ = \left( {\frac{{20\,212\,021}}{{2\,021}}\,.\,\frac{{2\,020}}{{20\,202\,020}}} \right).\left( {\frac{{{2^3}}}{{{3^2}}}\,.\,\frac{{ – 3}}{{{2^2}}}} \right)\,\\ = \left( {\frac{{2021.10\,001}}{{2\,021}}\,.\,\frac{{2\,020}}{{2020.10\,001}}} \right).\left( {\frac{{{2^3}.3.( – 1)}}{{{3^2}{{.2}^2}}}\,} \right)\,\\ = \frac{{2\,021.10\,001.\,2\,020}}{{2\,021.\,2\,020\,.10\,001}}\,\,.\,\,\frac{{2.( – 1)}}{3}\\ = 1.\frac{{( – 2)}}{3}\\ = \frac{{ – 2}}{3}\end{array}\)

TẢI APP ĐỂ XEM OFFLINE