Câu 4 trang 125 SGK Hình học 11 Nâng cao

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và BD ; P là một điểm thay đổi trên đoạn thẳng AD.

Đề bài

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và BD ; P là một điểm thay đổi trên đoạn thẳng AD.

a. Xác định giao điểm Q của mp(MNP) và cạnh AC. Tứ giác MNPQ là hình gì ?

b. Tìm quỹ tích giao điểm I của QM và PN

c. Tìm quỹ tích giao điểm J của QN và PM

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a. Kẻ đường thẳng qua P song song với CD cắt AC tại Q thì Q là giao điểm của AC và mp(MNP). Dễ thấy tứ giác MNPQ là hình thang (PQ // MN)

Chú ý : Nếu P ≡ A thì Q ≡ A ≡ P ; nếu P ≡ D thì Q ≡ C.

b. Thuận. Giả sử I là giao điểm của QM và PN. Theo định lí về giao tuyến của ba mặt phẳng (ABC), (ABD), (MNPQ) thì điểm I thuộc đường thẳng AB.

Vì P thay đổi trên đoạn thẳng AD nên dễ thấy I chỉ nằm trên phần của đường thẳng AB trừ đi các điểm trong đoạn thẳng AB.

Đảo. Lấy một điểm I bất kì thuộc đường thẳng AB nhưng không nằm giữa A và B. Gọi P, Q lần lượt là các giao điểm của IN với AD, của IM với AC. Khi đó rõ ràng mp(MNP) cắt AC tại Q và giao điểm của QM và PN là I.

Kết luận. Quỹ tích giao điểm I của QM và PN là đường thẳng AB trừ đi các điểm trong đoạn thẳng AB.

c. Tương tự như câu b, ta có quỹ tích giao điểm J của QN và MP là đoạn thẳng AO (O là giao điểm của DM và CN)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO