Bài 74 trang 114 SBT toán 9 tập 2

Giải bài 74 trang 114 sách bài tập toán 9. Cho lục giác ABCDEF. Chứng minh rằng đường chéo BF chia AD thành hai đoạn thẳng theo tỉ số 1: 3.

Đề bài

Cho lục giác \(ABCDEF.\) Chứng minh rằng đường chéo \(BF\) chia \(AD\) thành hai đoạn thẳng theo tỉ số \(1: 3.\)

Phương pháp giải – Xem chi tiết

Ta sử dụng kiến thức:

+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)

+) Số đo của nửa đường tròn bằng \(180^o.\)

+) Tứ giác có bốn cạnh bằng nhau là hình thoi.

+) Trong hình thoi, hai đường chéo cắt nhau tại trung điểm mỗi đường.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Lục giác đều \(ABCDEF\) nội tiếp trong đường tròn \((O)\)

\(\overparen{AB} = \overparen{CB} = \overparen{CD} = \overparen{DE}\)\( = \overparen{EF}\)\( = \overparen{FA} =60^\circ\)

\( \Rightarrow \) \(sđ \overparen{ABCD}\)\( = sđ \overparen{AB} + sđ \overparen{BC} +  sđ \overparen{CD}\)\(=180^\circ\)

Nên \(AD\) là đường kính của đường tròn \((O)\)

Ta có: \(OA = OB = OF = AB = AF = R\)

Nên tứ giác \(ABOF\) là hình thoi

Gọi giao điểm của \(AD\) và \(BF\) là \(H\)

Ta có: \(FB \bot OA\) (tính chất hình thoi)

\( \Rightarrow AH = HO = \displaystyle{{AO} \over 2} = {R \over 2}\)

\(HD = HO + OD = \displaystyle{R \over 2} + R = {\displaystyle{3R} \over 2}\)

Suy ra: \(\displaystyle{{AH} \over {HD}} = {{\displaystyle{R \over 2}} \over {\displaystyle{{3R} \over 2}}} = {1 \over 3}\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE