Bài 4 trang 120 Tài liệu dạy – học Toán 9 tập 1

Giải bài tập Cho hình thang cân ABCD ( AB // CD).

Đề bài

Cho hình thang cân ABCD ( AB // CD). Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Xác định tâm O của đường tròn này.

Phương pháp giải – Xem chi tiết

Gọi \(O\) là giao điểm của trục của hình thang cân \(ABCD\) và đường trung trực của cạnh bên \(AD\). Sử dụng tính chất: Điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó chứng minh \(OA = OB = OC = OD\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

 

Gọi \(d\) là trục của hình thang cân \(ABCD\), \(d’\) là đường trung trực của cạnh bên \(AD\).

Gọi \(O = d \cap d’\) ta có:

\(d\) là trục của hình thang cân \(ABCD \Rightarrow d\) là đường trung trực của AB và CD.

Mà \(O \in d \Rightarrow \left\{ \begin{array}{l}OA = OB\\OC = OD\end{array} \right.\,\,\left( 1 \right)\) (điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).

Lại có \(O \in d’ \Rightarrow OA = OD\,\,\left( 2 \right)\) (điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).

Từ (1) và (2) \( \Rightarrow OA = OB = OC = OD\).

Vậy bốn điểm \(A,\,\,B,\,\,C,\,\,D\) cùng thuộc đường tròn tâm \(O\), bán kính \(R = OA = OB = OC = OD\).

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

CHƯƠNG I: HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG