Bài 4 trang 100 SGK Toán 9 tập 1

Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí của mỗi điểm A(-1;-1), B(-1;-2),

Đề bài

Trên mặt phẳng tọa độ \(Oxy\), hãy xác định vị trí của mỗi điểm \(A(-1;-1),\ B(-1;-2),\ C(\sqrt{2};\sqrt{2})\) đối với đường tròn tâm \(O\) bán kính \(2\). 

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

+) Khoảng cách d từ gốc tọa độ \(O(0; 0)\) đến điểm \(A(x;y)\) được tính theo công thức \(d=\sqrt{x^{2}+y^{2}}\).                    (1)

+) Cho đường tròn tâm \(O\) bán kính \(R\), khi đó: 

a) Nếu \(OM=R\) thì \(M\) nằm trên đường tròn.

b) Nếu \(OM > R\) thì \(M\) nằm ngoài đường tròn.

c) Nếu \(OM < R\) thì \(M\) nằm trong đường tròn.

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

 Áp dụng công thức (1) tính khoảng cách từ một điểm đến gốc tọa độ , ta có: 

\(OA=\sqrt {{{( – 1)}^2} + {{( – 1)}^2}} =\sqrt{2}< 2\Rightarrow A\) nằm trong đường tròn \((O;2)\).

\(OB=\sqrt {{{( – 1)}^2} + {{( – 2)}^2}} =\sqrt{5}> 2\Rightarrow B\) nằm ngoài đường tròn \((O;2)\).

\(OC=\sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} =2\Rightarrow C\) nằm trên đường tròn \((O;2)\).

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE