Bài 5 trang 99 SGK Toán 11 tập 2 – Cánh Diều

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy

Đề bài

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:

a) SM(ABCD);

b) AD(SAB);

c) (SAD)(SBC).

Phương pháp giải – Xem chi tiết

‒ Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

‒ Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a, Tam giác SAB vuông cân tại S, có M là trung điểm của AB

SMAB(SAB)(ABCD)(SAB)(ABCD)=AB}SM(ABCD)

b) ABCD là hình chữ nhật ABAD

SM(ABCD)SMAD

AD(SAB)

c) AD(SAB)ADSB

Tam giác SAB vuông cân tại SSASB

SB(SAD)SB(SBC)}(SBC)(SAD)

Tam giác SAB vuông cân tại S, có M là trung điểm của AB

SMAB(SAB)(ABCD)(SAB)(ABCD)=AB}SM(ABCD)

b) ABCD là hình chữ nhật ABAD

SM(ABCD)SMAD

AD(SAB)

c) AD(SAB)ADSB

Tam giác SAB vuông cân tại SSASB

SB(SAD)SB(SBC)}(SBC)(SAD)

TẢI APP ĐỂ XEM OFFLINE