Giải bài 4 trang 82 SGK Toán 7 tập 2 – Chân trời sáng tạo

Cho tam giác DEF. Tia phân giác của góc D và E cắt nhau tại I. Qua I kẻ đường thẳng song song với EF, đường thằng này cắt DE tại M, cắt DF tại N. Chứng minh rằng ME + NF = MN.

Đề bài

Cho tam giác DEF. Tia phân giác của góc D và E cắt nhau tại I. Qua I kẻ đường thẳng song song với EF, đường thằng này cắt DE tại M, cắt DF tại N. Chứng minh rằng ME + NF = MN.

Phương pháp giải – Xem chi tiết

– Ta thấy MN = MI + NI

– Nên ta sẽ chứng minh MI = ME, NI = NF qua các tam giác cân

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Theo đề bài ta có MN song song với EF

\( \Rightarrow \) \(\widehat {FEI} = \widehat {EIM}\)(2 góc so le trong) và \(\widehat {EFI} = \widehat {FIN}\)(2 góc so le trong)

Xét có \(\widehat {FEI} = \widehat {EIM} = \widehat {IEM}\)(EI là phân giác góc E)cân tại M (2 góc đáy bằng nhau)

\( \Rightarrow \) EM = IM (2 cạnh bên tam giác cân) (1)

Xét có : \(\widehat {EFI} = \widehat {IFN} = \widehat {NIF}\)(FI là phân giác góc F) cân tại N (2 góc đáy bằng nhau)

\( \Rightarrow \)FN = IN (2 cạnh bên tam giác cân) (2)

Ta thấy MN = MI + NI (3)

Từ (1); (2) và (3) \( \Rightarrow \) ME + NF = MN

TẢI APP ĐỂ XEM OFFLINE

Toán 7 tập 1 – Chân trời sáng tạo

Toán 7 tập 2 – Chân trời sáng tạo