Giải bài 44 trang 45 sách bài tập toán 11 – Cánh diều

Lập bảng biến thiên và vẽ đồ thị hàm số:

Đề bài

Lập bảng biến thiên và vẽ đồ thị hàm số:

a) \(y = {\left( {\sqrt 2 } \right)^x};\)

b) \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^x};\)

c) \(y = {\log _{\sqrt 3 }}x;\)

d) \(y =  – {\log _2}x.\)

Phương pháp giải – Xem chi tiết

Sử dụng các tính chất của lũy thừa với số mũ hữu tỉ để rút gọn biểu thức.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Vì hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) có cơ số \(\sqrt 2  > 1\) nên ta có bảng biến thiên như sau:

 

Đồ thị của hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) là một đường cong liền nét đi qua các điểm \(\left( { – 2;\frac{1}{2}} \right),\left( {0;1} \right),\left( {2;2} \right),\left( {4;4} \right).\)


b) Vì hàm số \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^x}\) có cơ số \(\frac{1}{{\sqrt 2 }} < 1\) nên ta có bảng biến thiên như sau:


Đồ thị của hàm số \(y = {\left( {\frac{1}{{\sqrt 2 }}} \right)^x}\) là một đường cong liền nét đi qua các điểm \(\left( { – 4;4} \right),\left( { – 2;2} \right),\left( {0;1} \right),\left( {2;\frac{1}{2}} \right).\)



c) Vì hàm số \(y = {\log _{\sqrt 3 }}x\) có cơ số \[\sqrt 3  > 1\] nên ta có bảng biến thiên như sau:


Đồ thị của hàm số \(y = {\log _{\sqrt 3 }}x\) là một đường cong liền nét đi qua các điểm \(\left( {\frac{1}{3}; – 2} \right),\left( {1;0} \right),\left( {3;2} \right),\left( {9;4} \right).\)

d) Vì hàm số \(y =  – {\log _2}x\) có cơ số \(2 > 1\) nên ta có bảng biến thiên như sau:

 

Đồ thị của hàm số \(y =  – {\log _2}x\) là một đường cong liền nét đi qua các điểm \(\left( {\frac{1}{2};1} \right),\left( {1;0} \right),\left( {2; – 1} \right),\left( {4; – 2} \right).\)

 



TẢI APP ĐỂ XEM OFFLINE