Giải bài 4.26 trang 70 SGK Toán 10 – Kết nối tri thức

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có

Đề bài

Cho tam giác ABC có trọng tâm G. Chứng minh rằng với mọi điểm M, ta có:

\(M{A^2} + M{B^2} + M{C^2} = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\)

Phương pháp giải – Xem chi tiết

+) \(M{A^2} = {\overrightarrow {MA} ^2}\)

+) Với 3 điểm M, A, G bất kì ta có: \(\overrightarrow {MG}  + \overrightarrow {GA}  = \overrightarrow {MA} \)

+) G là trọng tâm tam giác ABC thì: \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Ta có:

 \(\begin{array}{l}M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\\ = {\left( {\overrightarrow {MG}  + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG}  + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG}  + \overrightarrow {GC} } \right)^2}\\ = {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GA}  + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB}  + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC}  + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow 0  + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\end{array}\)

( do G là trọng tâm tam giác ABC)

\(\begin{array}{l} = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\end{array}\) (đpcm).

TẢI APP ĐỂ XEM OFFLINE