Bài 67 trang 133 Sách bài tập Hình học lớp 12 Nâng cao

Tính khoảng cách từ điểm M0

Lựa chọn câu để xem lời giải nhanh hơn

Tính khoảng cách từ điểm M0 tới đường thẳng d trong mỗi trường hợp sau :

LG a

\(\;{M_0}(2;3;1),d:{{x + 2} \over 1} = {{y – 1} \over 2} = {{z + 1} \over { – 2}}.\)

Lời giải chi tiết:

Đường thẳng d đi qua điểm M (-2; 1; -1) và có vectơ chỉ phương \(\overrightarrow u \left( {1{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }} – 2} \right).\) Ta có \(\overrightarrow {{M_0}M} {\rm{ }} = \left( { – 4{\rm{ }};{\rm{ }} – 2{\rm{ }};{\rm{ }} – 2} \right)\)

\({\rm{ }}\left[ {\overrightarrow u ,\overrightarrow {{M_0}M} } \right]{\rm{ }} = {\rm{ }}\left( { – 8{\rm{ }};{\rm{ }}10{\rm{ }};{\rm{ }}6} \right)\)

\( \Rightarrow d\left( {{M_o},d} \right) = {{\left| {\left[ {\overrightarrow u ,\overrightarrow {{M_0}M} } \right]} \right|} \over {\left| {\overrightarrow u } \right|}} = {{\sqrt {{{( – 8)}^2} + {{10}^2} + {6^2}} } \over {\sqrt {{1^2} + {2^2} + {{( – 2)}^2}} }} \)

                       \(= {{\sqrt {200} } \over 3} = {{10\sqrt 2 } \over 3}\)

Vui lòng nhập mật khẩu để tiếp tục

test321

LG b

\(\;{M_0}(2;3; – 1),\) d là giao tuyến của hai mặt phẳng

\(\left( \alpha  \right):x + y – 2z – 1 = 0\) và \(\left( {\alpha ‘} \right):x + 3y + 2z + 2 = 0;\)

Lời giải chi tiết:

Ta xác định được một vectơ chỉ phương của d  là \(\overrightarrow u \)= (4 ; -2 ; 1).

Mặt phẳng (\(\alpha \)) đi qua Mo(2 ; 3 ; -1) và vuông góc với d có phương trình

\(4(x – 2) – 2(y – 3) + 1(z+ 1) = 0\)

\(\Leftrightarrow 4x – 2y + z – 1=0.\)

Gọi H  là giao điểm của d và (\(\alpha \)). Toạ độ điểm H là nghiệm của hệ :

\(\left\{ \matrix{  4x – 2y + z – 1 = 0 \hfill \cr  x + y – 2z – 1 = 0 \hfill \cr  x + 3y + 2z + 2 = 0 \hfill \cr}  \right. \Rightarrow H = \left( {{3 \over {14}}; – {5 \over {14}}; – {8 \over {14}}} \right)\).

Khi đó

\(d({M_o},d) = M_oH \)

\(= \sqrt {{{\left( {2 – {3 \over {14}}} \right)}^2} + {{\left( {3 + {5 \over {14}}} \right)}^2} + {{\left( { – 1 + {8 \over {14}}} \right)}^2}} \)

\( = \sqrt {{{2870} \over {{{14}^2}}}}  = \sqrt {{{205} \over {14}}} \)

LG c

\(\eqalign{\;{M_0}(1;2;1),d:{x \over 3} = {{y – 1} \over 4} = {{z + 3} \over 1}\cr} \)

Lời giải chi tiết:

\(d\left( {{M_o},d} \right) = {{\sqrt {9022} } \over {26}}.\)

LG d

\(\eqalign{\;{M_0}(1;0;0),d:{{x – 2} \over 1} = {{y – 1} \over 2} = {z \over 1}. \cr} \)

Lời giải chi tiết:

\(d\left( {{M_o},d} \right) = {{\sqrt 2 } \over 2}.\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

GIẢI TÍCH SBT – TOÁN 12 NÂNG CAO