Bài 1 trang 75 SGK Đại số và Giải tích 12 Nâng cao

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

Đề bài

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

a) Với số thực a và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m.n}};{{{a^m}} \over {{a^n}}} = {a^{m – n}}\)

b) Với hai số thực a, b cùng khác 0 và số nguyên n, ta có:
\({\left( {ab} \right)^n} = {a^n}.{b^n};{\left( {{a \over b}} \right)^n} = {{{a^n}} \over {{b^n}}}\)

c) Với hai số thực a, b thỏa mãn 0 < a < b với số nguyên a, ta có an < bn

d) Với số thực a khác 0 và hai số nguyên m, n, ta có: Nếu m>n thì \({a^m} > {a^n}\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Sai. Sửa lại:

Với số thực a khác 0 và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m+n}};{{{a^m}} \over {{a^n}}} = {a^{m – n}}\)

b) Đúng.

c) Sai (chẳng hạn \(a^0=b^0\))

d) Sai. Chẳng hạn 3 > 2 nhưng \({\left( {{1 \over 2}} \right)^3} < {\left( {{1 \over 2}} \right)^2}\).

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

GIẢI TÍCH – TOÁN 12 NÂNG CAO