Giải bài 23 trang 95 sách bài tập toán 11 – Cánh diều

Cho đoạn thẳng AB và mặt phẳng (P) sao cho \(\left( P \right) \bot AB\) và (P)

Đề bài

Cho đoạn thẳng AB và mặt phẳng (P) sao cho \(\left( P \right) \bot AB\) và (P) cắt đoạn thẳng AB tại điểm H thoả mãn HA = 4 cm, HB = 9 cm. Điểm C chuyển động trong mặt phẳng (P) thoả mãn \(\widehat {ACB} = {90^0}.\) Chứng minh rằng điểm C thuộc đường tròn tâm H bán kính 6 cm trong mặt phẳng (P).

Phương pháp giải – Xem chi tiết

Sử dụng hệ thức lượng trong tam giác vuông để tính độ dài HC.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Vì \(AC \bot CB\) nên A, B, C không thẳng hàng.

Ta có: \(\left( P \right) \bot AB,{\rm{ }}HC \subset \left( P \right)\) nên \(AB \bot HC.\)

Xét \(\Delta ABC\) vuông tại C, đường cao CH. Áp dụng hệ thức lượng trong tam giác vuông ta có: \(H{C^2} = HA.HB = 4.9 = 36 \Rightarrow HC = 6\left( {{\rm{cm}}} \right).\)

Vậy C thuộc đường tròn tâm H bán kính 6 cm trong (P).

TẢI APP ĐỂ XEM OFFLINE