Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao

Tính các tổng sau :

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tổng sau :

Vui lòng nhập mật khẩu để tiếp tục

test321

LG a

Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

Phương pháp giải:

– Tính \(q = \frac{{{u_2}}}{{{u_1}}}\)

– Tính số các số hạng của CSN theo công thức \({u_n} = {u_1}{q^{n – 1}}\)

– Tính tổng \[{S_n} = \frac{{{u_1}\left( {1 – {q^n}} \right)}}{{1 – q}}\]

Lời giải chi tiết:

Gọi q là công bội của cấp số nhân đã cho.

Ta có:  \(q = {{{u_2}} \over {{u_1}}} = {{54} \over {18}} = 3\)

Giả sử cấp số nhân có n số hạng ta có :

\(\eqalign{
& 39366 = {u_n} = {u_1}.{q^{n – 1}} = {18.3^{n – 1}} \cr 
& \Rightarrow {3^{n – 1}} = {{39366} \over {18}} = 2187 = {3^7} \cr&\Rightarrow n = 8 \cr 
& \Rightarrow {S_8} = {u_1}.{{1 – {q^8}} \over {1 – q}} = 18.{{1 – {3^8}} \over {1 – 3}} \cr&= 59040 \cr} \)

LG b

Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng \({1 \over {256}}\) , số hạng thứ hai bằng \({{ – 1} \over {512}}\) và số hạng cuối bằng  \({1 \over {1048576}}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& q = {{{u_2}} \over {{u_1}}} = – {1 \over 2} \cr 
& {u_n} = {u_1}.{q^{n – 1}} \cr&\Rightarrow {1 \over {1048576}} = {1 \over {256}}.{\left( { – {1 \over 2}} \right)^{n – 1}} \cr 
& \Leftrightarrow {\left( { – \frac{1}{2}} \right)^{n – 1}} = \frac{1}{{4096}} = {\left( { – \frac{1}{2}} \right)^{12}} \cr&\Leftrightarrow n – 1 = 12 \Leftrightarrow n = 13\cr& \Rightarrow {S_{13}} = {1 \over {256}}.{{1 – {{\left( {{{ – 1} \over 2}} \right)}^{13}}} \over {1 – \left( { – {1 \over 2}} \right)}}\cr& = {{2731} \over {1048576}} \cr} \)

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO