Bài 3.3 trang 164 SBT giải tích 12

Giải bài 3.3 trang 164 sách bài tập giải tích 12. Tìm nguyên hàm của các hàm số sau:…

Lựa chọn câu để xem lời giải nhanh hơn

Tìm nguyên hàm của các hàm số sau:

LG câu a

a) \(f(x) = {(x – 9)^4}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(x – 9 = t\) \( \Rightarrow dx = dt\)

Khi đó \(\int {{{\left( {x – 9} \right)}^4}dx} \) \( = \int {{t^4}dt}  = \dfrac{{{t^5}}}{5} + C\)\( = \dfrac{{{{\left( {x – 9} \right)}^5}}}{5} + C\)

Vậy \(F\left( x \right) = \dfrac{{{{\left( {x – 9} \right)}^5}}}{5} + C\)

Vui lòng nhập mật khẩu để tiếp tục

test123

LG câu b

b) \(f(x) = \dfrac{1}{{{{(2 – x)}^2}}}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(2 – x = t \Rightarrow dx =  – dt\)

Khi đó \(\int {\dfrac{1}{{{{\left( {2 – x} \right)}^2}}}dx}  = \int {\dfrac{{ – dt}}{{{t^2}}}} \) \( = \dfrac{1}{t} + C = \dfrac{1}{{2 – x}} + C\)

Vậy \(F(x) = \dfrac{1}{{2 – x}} + C\)

LG câu c

c) \(f(x) = \dfrac{x}{{\sqrt {1 – {x^2}} }}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(\sqrt {1 – {x^2}}  = t \Rightarrow 1 – {x^2} = {t^2}\) \( \Rightarrow  – 2xdx = 2tdt \Leftrightarrow xdx =  – tdt\)

Khi đó \(\int {\dfrac{x}{{\sqrt {1 – {x^2}} }}dx}  = \int {\dfrac{{ – tdt}}{t}}  = \int { – dt} \) \( =  – t + C =  – \sqrt {1 – {x^2}}  + C\)

Vậy \(F(x) =  – \sqrt {1 – {x^2}}  + C\)

LG câu d

d) \(f(x) = \dfrac{1}{{\sqrt {2x + 1} }}\)

Phương pháp giải:

Sử dụng phương pháp đổi biến tìm nguyên hàm.

Giải chi tiết:

Đặt \(\sqrt {2x + 1}  = t \Rightarrow 2x + 1 = {t^2}\) \( \Rightarrow 2dx = 2tdt \Rightarrow dx = tdt\)

Khi đó \(\int {\dfrac{1}{{\sqrt {2x + 1} }}dx}  = \int {\dfrac{{tdt}}{t}}  = \int {dt} \) \( = t + C = \sqrt {2x + 1}  + C\)

Vậy \(F(x) = \sqrt {2x + 1}  + C\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE