Bài 1.17 trang 19 SGK Toán 11 tập 1 – Cùng khám phá

Chứng minh các đẳng thức sau (giả sử các biểu thức đều có nghĩa):

Đề bài

Chứng minh các đẳng thức sau (giả sử các biểu thức đều có nghĩa):

a) \({\cos ^4}\alpha  – {\sin ^4}\alpha  = \cos 2\alpha ;\)

b) \(\sin \left( {a + b} \right)\sin \left( {a – b} \right) = {\cos ^2}b – {\cos ^2}a;\)

c) \(\frac{{\sin a + \sin 2a}}{{1 + \cos a + \cos 2a}} = \tan a.\)

Phương pháp giải – Xem chi tiết

Biến đổi vế trái (thường là vế phức tạp hơn) thành vế phải (thường là vế đơn giản hơn).

Áp dụng công thức nhân đôi, công thức biến tích thành tổng.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a)

\(\begin{array}{l}{\cos ^4}\alpha  – {\sin ^4}\alpha  = {\left( {{{\cos }^2}\alpha } \right)^2} – {\left( {{{\sin }^2}\alpha } \right)^2}\\ = \left( {{{\cos }^2}\alpha  – {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right)\\ = \cos 2\alpha .1 = \cos 2\alpha \end{array}\)

b)

\(\begin{array}{l}\sin \left( {a + b} \right)\sin \left( {a – b} \right) = \frac{1}{2}\left[ {\cos \left( {a + b – a + b} \right) – \cos \left( {a + b + a – b} \right)} \right]\\ = \frac{1}{2}\left( {\cos 2b – \cos 2a} \right) = \frac{1}{2}\left( {2{{\cos }^2}b – 1 – 2{{\cos }^2}a + 1} \right)\\ = \frac{1}{2}\left( {2{{\cos }^2}b – 2{{\cos }^2}a} \right) = {\cos ^2}b – {\cos ^2}a\end{array}\)

c)

\(\begin{array}{l}\frac{{\sin a + \sin 2a}}{{1 + \cos a + \cos 2a}} = \frac{{\sin a + 2\sin a\cos a}}{{1 + \cos a + 2{{\cos }^2}a – 1}}\\ = \frac{{\sin a\left( {1 + 2\cos a} \right)}}{{\cos a + 2{{\cos }^2}a}} = \frac{{\sin a\left( {1 + 2\cos a} \right)}}{{\cos a\left( {1 + 2\cos a} \right)}}\\ = \frac{{\sin a}}{{\cos a}} = \tan a\end{array}\)

TẢI APP ĐỂ XEM OFFLINE