Lý thuyết về biến đổi đơn giản biểu thức chứa căn thức bậc hai

Đưa thừa số ra ngoài dấu căn

Vui lòng nhập mật khẩu để tiếp tục

test321

1. Đưa thừa số ra ngoài dấu căn

Với hai biểu thức A, B mà \(B\geq 0\), ta có \(\sqrt{A^{2}B}=\left | A \right |\sqrt{B;}\) tức là:

Nếu \(A\geq 0\) và \(B\geq 0\) thì \(\sqrt{A^{2}B}=A\sqrt{B}\);

Nếu \(A<0\) và \(B\geq 0\) thì \(\sqrt{A^{2}B}=-A\sqrt{B}\).

Ví dụ: Với \(x\ge 0\) ta có: \(\sqrt {48{x^2}}  = \sqrt {3.16{x^2}}  \)\(= \sqrt {{{\left( {4x} \right)}^2}.3}  = 4x\sqrt 3 \) 

2. Đưa thừa số vào trong dấu căn

Với \(A\geq 0\) và \(B\geq 0\) thì \(A\sqrt{B}=\sqrt{A^{2}B};\)

Với \(A<0\) và \(B\geq 0\) thì \(A\sqrt{B}=-\sqrt{A^{2}B}.\)

Ví dụ: Với \(x<0\) ta có: \(x\sqrt 3  =  – \sqrt {3{x^2}} \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE