Giải Bài 9 trang 10 sách bài tập toán 7 tập 1 – Cánh diều

Sắp xếp các số sau theo thứ tự giảm dần:

Đề bài

Sắp xếp các số sau theo thứ tự giảm dần:

a) \(\dfrac{2}{{15}};{\rm{ }}\dfrac{2}{3};{\rm{ }} – \dfrac{7}{8};{\rm{ }}\dfrac{5}{6};{\rm{ }}\dfrac{{ – 7}}{9}\);                                                          

b) \(\dfrac{{19}}{{22}};{\rm{ }}0,5;{\rm{ }} – \dfrac{1}{4};{\rm{ }} – 0,05;{\rm{ }}2\dfrac{1}{6}\).

Phương pháp giải – Xem chi tiết

So sánh các cặp số với nhau để sắp xếp chúng theo thứ tự giảm dần.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Ta có:

\(\dfrac{2}{{15}};{\rm{ }}\dfrac{2}{3};{\rm{ }}\dfrac{5}{6}{\rm{  >  0  >  }} – \dfrac{7}{8};{\rm{ }}\dfrac{{ – 7}}{9}\).

\( – \dfrac{7}{8} = \dfrac{{ – 7}}{8} < \dfrac{{ – 7}}{9}\);

\(\dfrac{2}{{15}} = \dfrac{8}{{60}};{\rm{ }}\dfrac{2}{3} = \dfrac{{40}}{{60}};{\rm{ }}\dfrac{5}{6}{\rm{ = }}\dfrac{{50}}{{60}}{\rm{ }}\) mà \(\dfrac{8}{{60}} < \dfrac{{40}}{{60}} < \dfrac{{50}}{{60}}\) nên \(\dfrac{2}{{15}} < \dfrac{2}{3} < \dfrac{5}{6}\).

Suy ra: \(\dfrac{5}{6}{\rm{  >  }}\dfrac{2}{3}{\rm{  >  }}\dfrac{2}{{15}}{\rm{  >  }}\dfrac{{ – 7}}{9}{\rm{  > }}\,{\rm{ }} – \dfrac{7}{8}\).

Các số theo thứ tự giảm dần là: \(\dfrac{5}{6};{\rm{ }}\dfrac{2}{3}{\rm{; }}\dfrac{2}{{15}};{\rm{ }}\dfrac{{ – 7}}{9};\,{\rm{ }} – \dfrac{7}{8}\).

b) Cách 1:

Ta có:

\(\dfrac{{19}}{{22}};{\rm{ }}0,5;{\rm{ }}2\dfrac{1}{6}{\rm{  >  0  > }} – \dfrac{1}{4};{\rm{ }} – 0,05\).

\( – \dfrac{1}{4} =  – 0,25 <  – 0,05\).

\(\dfrac{{19}}{{22}} = \dfrac{{57}}{{66}};{\rm{ }}0,5 = \dfrac{1}{2} = \dfrac{{33}}{{66}};{\rm{ }}2\dfrac{1}{6}{\rm{ = }}\dfrac{{13}}{6}{\rm{ = }}\dfrac{{143}}{{66}}{\rm{ }}\)mà \(\dfrac{{33}}{{66}}{\rm{  <  }}\dfrac{{57}}{{66}}{\rm{  <  }}\dfrac{{143}}{{66}}{\rm{ }}\)nên \(0,5{\rm{  <  }}\dfrac{{19}}{{22}}{\rm{  <  2}}\dfrac{1}{6}\).

Suy ra: \({\rm{ }}2\dfrac{1}{6}{\rm{  > }}\,{\rm{ }}\dfrac{{19}}{{22}}{\rm{  >  }}0,5{\rm{  > }} – 0,05{\rm{  >  }} – \dfrac{1}{4}\).

Các số theo thứ tự giảm dần là: \({\rm{ }}2\dfrac{1}{6};\,{\rm{ }}\dfrac{{19}}{{22}}{\rm{; }}0,5;{\rm{ }} – 0,05;{\rm{ }} – \dfrac{1}{4}\). 

Cách 2:

\(\dfrac{{19}}{{22}};{\rm{ }}0,5;{\rm{ }}2\dfrac{1}{6}{\rm{  >  0  > }} – \dfrac{1}{4};{\rm{ }} – 0,05\).

\( – \dfrac{1}{4} =  – 0,25 <  – 0,05\).

\(0,5=\dfrac{11}{22}<\dfrac{19}{22}<1<2\dfrac{1}{6}\)

Ta được: 

\({\rm{ }}2\dfrac{1}{6}{\rm{  > }}\,{\rm{ }}\dfrac{{19}}{{22}}{\rm{  >  }}0,5{\rm{  > }} – 0,05{\rm{  >  }} – \dfrac{1}{4}\).

Các số theo thứ tự giảm dần là: \({\rm{ }}2\dfrac{1}{6};\,{\rm{ }}\dfrac{{19}}{{22}}{\rm{; }}0,5;{\rm{ }} – 0,05;{\rm{ }} – \dfrac{1}{4}\). 

TẢI APP ĐỂ XEM OFFLINE