Giải bài 9.9 trang 90 SGK Toán 8 tập 2 – Kết nối tri thức

Cho góc BAC và các điểm M, N lần lượt trên các đoạn thẳng AB, AC

Đề bài

Cho góc BAC và các điểm M, N lần lượt trên các đoạn thẳng AB, AC sao cho \(\widehat {ABN} = \widehat {ACM}\)

a) Chứng minh rằng ΔABN  ΔACM

b) Gọi I là giao điểm của BN và CM. Chứng minh rằng IB.IN=IC.IM

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

a) Chứng minh: tam giác ABN và tam giác ACM

có góc A chung, \(\widehat {ABN} = \widehat {ACM}\)

=> ΔABN  ΔACM

b) Chứng minh: ΔIBM  ΔICN (g.g) nên suy ra các tỉ số đồng dạng

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

a) Xét tam giác ABN và tam giác ACM

có góc A chung, \(\widehat {ABN} = \widehat {ACM}\)

=> ΔABN ∽ ΔACM

b) Có ΔABN  ΔACM

\(\widehat {ANB} = \widehat {AMC}\)

Có \(\widehat {ANB} + \widehat {CNB} = {180^o}\)

     \(\widehat {AMC} + \widehat {BMC} = {180^o}\)

=> \(\widehat {CNB} = \widehat {BMC}\)

Xét tam giác IBM và tam giác ICN 

Có \(\widehat {CNB} = \widehat {BMC}\) và \(\widehat {IBM} = \widehat {ICN}\)

  => ΔIBM  ΔICN (g.g)

=> \(\frac{{IB}}{{IC}} = \frac{{IM}}{{IN}}\)

=> IB.IN=IC.IM

TẢI APP ĐỂ XEM OFFLINE

Toán 8 tập 1 – Kết nối tri thức với cuộc sống

Toán 8 tập 2 – Kết nối tri thức