Giải bài 7 trang 73 sách bài tập toán 8 – Chân trời sáng tạo tập 2

Nếu $\Delta ABC\backsim \Delta XYZ$, biết \(\widehat Y = {75^0},\widehat Z = {36^0}\). Khi đó số đo \(\widehat A\) bằng:

Đề bài

Nếu $\Delta ABC\backsim \Delta XYZ$, biết \(\widehat Y = {75^0},\widehat Z = {36^0}\). Khi đó số đo \(\widehat A\) bằng:

A. \({60^0}\).

B. \({69^0}\).

C. \({36^0}\).

D. \({75^0}\).

Phương pháp giải – Xem chi tiết

Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tính: Tam giác A’B’C’ gọi là đồng dạng với tam giác ABC nếu \(\widehat {A’} = \widehat A,\widehat {B’} = \widehat B,\widehat {C’} = \widehat C,\frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}} = \frac{{B’C’}}{{BC}} = k\) (k gọi là tỉ số đồng dạng).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Ta có: \(\widehat X = {180^0} – \widehat Y – \widehat Z = {180^0} – {75^0} – {36^0} = {69^0}\)

Vì $\Delta ABC\backsim \Delta XYZ$ nên \(\widehat A = \widehat X = {69^0}\)

Chọn B.

TẢI APP ĐỂ XEM OFFLINE