Giải bài 7.3 trang 26 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho tứ diện \(ABCD\), gọi \(M\) và \(N\) lần lượt là trung điểm của \(AC\) và \(BD\).

Đề bài

Cho tứ diện \(ABCD\), gọi \(M\) và \(N\) lần lượt là trung điểm của \(AC\) và \(BD\). Biết \(MN = a\sqrt 3 ;AB = 2\sqrt 2 a\) và \(CD = 2a\). Chứng minh rằng đường thẳng \(AB\) vuông góc với đường thẳng \(CD\).

Phương pháp giải – Xem chi tiết

Chứng minh góc giữa đường thẳng \(AB\) và \(CD\)  bằng \({90^ \circ }\)

+ Bước 1: Tính góc giữa hai đường thẳng \(AB\) và \(CD\) bằng \({90^ \circ }\)

+ Bước 2: Kết luận  đường thẳng \(AB\) vuông góc với đường thẳng \(CD\).

Chú ý sử dụng định lý đảo Pytago để chứng minh tam giác là tam giác vuông

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Lấy \(K\) là trung điểm của cạnh \(BC\), ta có: \(NK\) và \(MK\) lần lượt là đường trung bình của tam giác \(BCD\) và tam giác \(ABC\) nên \(NK = a,MK = a\sqrt 2 \).

Do đó, \(M{N^2} = 3{a^2} = N{K^2} + M{K^2}\) suy ra tam giác \(MNK\) vuông tại \(K\), hay \(MK \bot NK\), mà \(MK//AB\) và \(NK//CD\) nên \(\left( {AB,CD} \right) = \left( {MK,NK} \right) = {90^ \circ }\), hay \(AB \bot CD\).

TẢI APP ĐỂ XEM OFFLINE