Giải bài 35 trang 16 sách bài tập toán 10 – Cánh diều

Cho \({\left( {2x – \frac{1}{3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\). Tính:

Đề bài

Cho \({\left( {2x – \frac{1}{3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\). Tính: 

a) \({a_2}\)

b) \({a_0} + {a_1} + {a_2} + {a_3} + {a_4}\)

Phương pháp giải – Xem chi tiết

Bước 1: Áp dụng công thức khai triển: \({(a – b)^4} = {a^4} – 4{a^3}b + 6{a^2}{b^2} – 4a{b^3} + {b^4}\) với \(a = 2x,b = \frac{1}{3}\)

Bước 2: Thay x = 1 vào khai triển trong giả thiết để tính tổng các hệ số của khai triển

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Ta có: 

 

                

Ta thấy \({a_2}\) là hệ số của \({x^2}\)

Số hạng chứa \({x^2}\) trong khai triển biểu thức \({\left( {2x – \frac{1}{3}} \right)^4}\) là \(\frac{8}{3}{x^2}\)

Suy ra hệ số của trong khai triển biểu thức \({\left( {2x – \frac{1}{3}} \right)^4}\) là \(\frac{8}{3}\)

Vậy \({a_2} = \frac{8}{3}\)

b) Ta có \({\left( {2x – \frac{1}{3}} \right)^4} = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3} + {a_4}{x^4}\)

Chọn x = 1, ta được:

 

 

Vậy \({a_0} + {a_1} + {a_2} + {a_3} + {a_4} = \frac{{625}}{{81}}\)

TẢI APP ĐỂ XEM OFFLINE