Câu 7 trang 135 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số (un) xác định bởi

\({u_1} = 10\,\text{ và }\,{u_{n + 1}} = {{{u_n}} \over 5} + 3\) với mọi \(n ≥ 1\)

Vui lòng nhập mật khẩu để tiếp tục

test321

LG a

Chứng minh rằng dãy số (vn) xác định bởi \({v_n} = {u_n} – {{15} \over 4}\) là một cấp số nhân.

Phương pháp giải:

Dãy số \((v_n)\) là cấp số nhân nếu \(v_{n+1}=q.v_n\) với q là số thực không đổi (công bội).

Lời giải chi tiết:

Ta có:  \(\displaystyle {v_{n + 1}} = {u_{n + 1}} – {{15} \over 4}\) \(\displaystyle = {{{u_n}} \over {5}} + 3 – {{15} \over 4} = {{{u_n}} \over 5} – {3 \over 4}\)

Thay \(\displaystyle {u_n} = {v_n} + {{15} \over 4}\) vào ta được:

\(\displaystyle {v_{n + 1}} = {1 \over 5}\left( {{v_n} + {{15} \over 4}} \right) – {3 \over 4}  \) \(\displaystyle = \frac{1}{5}{v_n} + \frac{3}{4} – \frac{3}{4}= {1 \over 5}{v_n},\forall n\)

Vậy (vn) là cấp số nhân lùi vô hạn với công bội  \(\displaystyle q = {1 \over 5}\)

LG b

 Tìm \(\lim u_n\).

Phương pháp giải:

Tìm số hạng tổng quát \({v_n} = {v_1}{q^{n – 1}}\) suy ra giới hạn \(\lim v_n\).

Từ đó suy ra \(\lim u_n\).

Lời giải chi tiết:

 Ta có:

\(\eqalign{
& {v_1} = {u_1} – {{15} \over 4} = 10 – {{15} \over 4} = {{25} \over 4} \cr 
& {v_n} = {v_1}.{q^{n – 1}} = {{25} \over 4}.{\left( {{1 \over 5}} \right)^{n – 1}} \cr 
& \lim {\left( {\frac{1}{5}} \right)^{n – 1}} = 0\Rightarrow \lim {v_n} = 0\cr &  \Rightarrow \lim \left( {{u_n} – \frac{{15}}{4}} \right) = 0\cr &\Rightarrow \lim {u_n} = {{15} \over 4} \cr} \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO