Câu 2 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0

Lựa chọn câu để xem lời giải nhanh hơn

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0


Vui lòng nhập mật khẩu để tiếp tục

test321

LG a

 \(y = 2x + 1,{x_0} = 2\)

Phương pháp giải:

– Tính \(\Delta y=f(x_0+\Delta x)-f(x_0)\)

– Tìm giới hạn \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\)

Lời giải chi tiết:

\(f(x) = 2x + 1\) , cho x0 = 2 một số gia Δx

Ta có:

\(\eqalign{  & \Delta y = f\left( {{x_0} + \Delta x} \right) – f\left( {{x_0}} \right)  \cr  &  = f\left( {2 + \Delta x} \right) – f\left( 2 \right)  \cr  &  = 2\left( {2 + \Delta x} \right) + 1 – 5 = 2\Delta x  \cr  &  \Rightarrow {{\Delta y} \over {\Delta x}} = 2 \cr &\Rightarrow f’\left( 2 \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = 2 \cr} \)

LG b

 \(y = {x^2} + 3x,{x_0} = 1\)

Lời giải chi tiết:

\(f\left( x \right) = {x^2} + 3x;\) cho x0 = 1 một số gia Δx

Ta có:

\(\eqalign{  & \Delta y = f\left( {{x_0} + \Delta x} \right) – f\left( {{x_0}} \right)  \cr  &  = f\left( {1 + \Delta x} \right) – f\left( 1 \right)  \cr  &  = {\left( {1 + \Delta x} \right)^2} + 3\left( {1 + \Delta x} \right) – 4  \cr  &  = 5\Delta x + ({\Delta }x)^2  \cr  &  \Rightarrow {{\Delta y} \over {\Delta x}} = 5 + \Delta x \cr &\Rightarrow \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} =\mathop {\lim }\limits_{\Delta x \to 0} (5 + \Delta x )= 5 \cr} \)

Vậy \(f'(1) = 5\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO