Câu 13 trang 106 SGK Đại số và Giải tích 11 Nâng cao

Hãy xét tính tăng

Lựa chọn câu để xem lời giải nhanh hơn

Hãy xét tính tăng, giảm của các dãy số sau:

LG a

Dãy số (un) với \({u_n} = {n^3} – 3{n^2} + 5n – 7\)

Phương pháp giải:

Xét hiệu un+1 – un và so sánh với 0.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {u_{n + 1}} – {u_n} \cr&= {\left( {n + 1} \right)^3} – 3{\left( {n + 1} \right)^2} + 5\left( {n + 1} \right) – 7\cr& – \left( {{n^3} – 3{n^2} + 5n – 7} \right) \cr 
& = {n^3} + 3{n^2} + 3n + 1 \cr&- 3\left( {{n^2} + 2n + 1} \right) + 5n + 5 – 7\cr& – {n^3} + 3{n^2} – 5n + 7\cr&= 3{n^2} – 3n + 3 \cr& = 3n\left( {n – 1} \right) + 3> 0,\forall n \in \mathbb N^* \cr} \)

\( \Rightarrow {u_{n + 1}} > {u_n} \Rightarrow \left( {{u_n}} \right)\) là dãy số tăng.

Vui lòng nhập mật khẩu để tiếp tục

test321

LG b

Dãy số (xn) với  \({x_n} = {{n + 1} \over {{3^n}}}\)

Phương pháp giải:

Xét tỉ số \({{{x_n}} \over {{x_{n + 1}}}}\) và so sánh với 1.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {{{x_n}} \over {{x_{n + 1}}}} = {{n + 1} \over {{3^n}}}.{{{3^{n + 1}}} \over {n + 2}} \cr&= {{3\left( {n + 1} \right)} \over {n + 2}} = {{3n + 3} \over {n + 2}} > 1\;\forall n  \in \mathbb N^*\cr&\text{vì } \,3n + 3 > n + 2\;\forall n  \in \mathbb N^*  \cr 
& \Rightarrow {x_n} > {x_{n + 1}} \cr} \)

\(⇒ (x_n)\) là dãy số giảm.

LG c

Dãy số (an) với  \({a_n} = \sqrt {n + 1} – \sqrt n \)

Phương pháp giải:

Viết lại công thức xác định an dưới dạng

\({a_n} = {1 \over {\sqrt {n + 1} + \sqrt n }}\) (sử dụng nhân chia liên hợp)

Tiếp theo, xét tỉ số \({{{a_n}} \over {{a_{n + 1}}}}\) và so sánh với 1.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {a_n} = \sqrt {n + 1} – \sqrt n \cr& = \frac{{\left( {\sqrt {n + 1}  – \sqrt n } \right)\left( {\sqrt {n + 1}  + \sqrt n } \right)}}{{\sqrt {n + 1}  + \sqrt n }} \cr&= \frac{{n + 1 – n}}{{\sqrt {n + 1}  + \sqrt n }}\cr&= {1 \over {\sqrt {n + 1} + \sqrt n }} \cr 
& {{{a_n}} \over {{a_{n + 1}}}} \cr&=\frac{1}{{\sqrt {n + 1}  + \sqrt n }}:\frac{1}{{\sqrt {n + 2}  + \sqrt {n + 1} }}\cr&= {{\sqrt {n + 2} + \sqrt {n + 1} } \over {\sqrt {n + 1} + \sqrt n }} > 1 \cr 
& \Rightarrow {a_n} > {a_{n + 1}} \cr} \)

⇒ \((a_n)\) là dãy số giảm.

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO