Bài 31 trang 89 SGK Toán 9 tập 1

Trong hình 33:

Đề bài

Trong hình 33, \(AC=8cm,\ AD=9,6cm,\ \widehat{ABC}=90^o,\ \)

\(\widehat{ACB}=54^o\) và \(\widehat{ACD}=74^o\). Hãy tính:

a) AB; 

b) \(\widehat {ADC}\).

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

a) Sử dụng hệ thức giữa cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(B\) thì: \(AB=AC. \sin C\).

b) Kẻ thêm đường cao để làm xuất hiện tam giác vuông (Kẻ \(AH ⊥ CD\))

+) Sử dụng hệ thức về cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\) khi đó: \(AB=BC. \sin C\) hoặc \(AC=AB. \sin B\).

+) Biết \(\sin \alpha\) dùng máy tính ta tính được số đo góc \(\alpha\).

Vui lòng nhập mật khẩu để tiếp tục

test321

Lời giải chi tiết

a) Xét tam giác \(ABC\) vuông tại \(B\) có:

\( \sin C = \frac{AB}{AC}\)

Nên \(AB = AC.\sin C = 8.\sin {54^0} \approx 6,472\left( {cm} \right)\)

b) Kẻ \(AH\) vuông góc với \(CD\) tại \(H.\)

Xét tam giác \(ACH\) vuông tại \(H\) có:

\(\sin C = \frac{AH}{AC}\)

Nên \(AH = AC.\sin C = 8.\sin {74^0} \approx 7,69\left( {cm} \right)\)

Xét tam giác \(AHD\) vuông tại \(H\) có:

\(\sin {\rm{D}} = \dfrac{AH}{AD} \approx \dfrac{7,69}{9,6} \approx 0,801\)

Bấm máy tính: SHIFT sin 0,801 = 

\(\Rightarrow \widehat D \approx {53^0}\).

TẢI APP ĐỂ XEM OFFLINE