Bài 3 trang 132 SGK Toán 9 tập 2

Giá trị của biểu thức:

Đề bài

 Giá trị của biểu thức \({{2\left( {\sqrt 2  + \sqrt 6 } \right)} \over {3\sqrt {2  + \sqrt 3 }}}\) bằng

(A) \(\displaystyle {{2\sqrt 2 } \over 3}\)         (B) \(\displaystyle {{2\sqrt 3 } \over 3}\)          (C) 1                (D)\(\displaystyle {4 \over 3}\) 

Hãy chọn câu trả lời đúng.

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

+) Sử dụng các công thức hằng đẳng thức và khai phương căn bậc hai để rút gọn biểu thức.

Vui lòng nhập mật khẩu để tiếp tục

test321

Lời giải chi tiết

Ta có: 

\(\eqalign{
& {{2\left( {\sqrt 2 + \sqrt 6 } \right)} \over {3\sqrt {2 + \sqrt 3 }}} = {{2\left( {\sqrt 2 + \sqrt 6 } \right).\sqrt 2 } \over {(3\sqrt{ 2 + \sqrt 3} }) .\sqrt 2 } \cr
& = {{2\left( {2 + 2\sqrt 3 } \right)} \over {3.\sqrt {\left( {2 + \sqrt 3 } \right).2} }} = {{2\left( {2 + 2\sqrt 3 } \right)} \over {3.\sqrt {4 + 2\sqrt 3 } }} \cr
& = {{2\left( {2 + 2\sqrt 3 } \right)} \over {3.\sqrt {{{\left( {\sqrt 3 } \right)}^2} + 2\sqrt 3 .1 + {1^2}} }} = {{4\left( {1 + \sqrt 3 } \right)} \over {3.\sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} }} \cr
& = {{4\left( {1 + \sqrt 3 } \right)} \over {3\left( {1 + \sqrt 3 } \right)}} = {4 \over 3}. \cr} \)

Chọn đáp án D.

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE