Lời giải
Câu 1:
Phương pháp:
1) Sử dụng công thức: \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \,\,\,khi\,\,\,A \ge 0\\ – A\sqrt B \,\,\,khi\,\,A < 0\end{array} \right..\)
2) a) Quy đồng, rút gọn biểu thức.
b) Nhân chéo, giải tìm \(x\).
Cách giải:
1) Tính giá trị các biểu thức sau:
\(\begin{array}{l}A = 3\sqrt {49} – \sqrt {25} = 3\sqrt {{7^2}} – \sqrt {{5^2}} = 3.7 – 5 = 21 – 5 = 16\\B = \sqrt {{{\left( {3 – 2\sqrt 5 } \right)}^2}} – \sqrt {20} = \left| {3 – 2\sqrt 5 } \right| – \sqrt {{2^2}.5} = 2\sqrt 5 – 3 – 2\sqrt 5 = – 3\end{array}\)
2) Cho biểu thức \(P = \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} + \dfrac{{\sqrt x }}{{x – \sqrt x }}} \right):\dfrac{{\sqrt x + 1}}{3}\) với \(x > 0,\,\,x \ne 1\).
a) Rút gọn biểu thức \(P\).
\(\begin{array}{l}P = \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} + \dfrac{{\sqrt x }}{{x – \sqrt x }}} \right):\dfrac{{\sqrt x + 1}}{3} = \left( {\dfrac{{\sqrt x }}{{\sqrt x – 1}} + \dfrac{{\sqrt x }}{{\sqrt x \left( {\sqrt x – 1} \right)}}} \right):\dfrac{{\sqrt x + 1}}{3}\\\,\,\,\, = \dfrac{{x + \sqrt x }}{{\sqrt x \left( {\sqrt x – 1} \right)}}.\dfrac{3}{{\sqrt x + 1}} = \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x – 1} \right)}}.\dfrac{3}{{\sqrt x + 1}}\\\,\,\,\, = \dfrac{3}{{\sqrt x – 1}}.\end{array}\)
Vậy \(P = \dfrac{3}{{\sqrt x – 1}}\).
b) Tìm giá trị của \(x\) để \(P = 1\).
\(P = 1 \Leftrightarrow \dfrac{3}{{\sqrt x – 1}} = 1 \Leftrightarrow \sqrt x – 1 = 3 \Leftrightarrow \sqrt x = 4 \Leftrightarrow x = 16\,\,\left( {tm} \right)\).
Vậy để \(P = 1\) thì \(x = 16\).
Câu 2:
Phương pháp:
Phương pháp:
1) a) Lập bảng giá trị, xác định các điểm đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\) đi qua và vẽ đồ thị hàm số.
b) Đường thẳng \({d_1}:\,\,y = {a_1}x + {b_1}\) và \({d_2}:\,\,y = {a_2}x + {b_2}\) là hai đường thẳng song song với nhau \( \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} \ne {b_2}\end{array} \right..\)
Tìm tọa độ giao điểm A của hai đồ thị hàm số \(\left( {{d_1}} \right)\) và \(\left( P \right)\) rồi thay vào phương trình \(\left( {{d_1}} \right)\) tìm \(b.\)
2) Giải hệ phương trình bằng phương pháp thế hoặc phương pháp cộng đại số.
Cách giải:
1) a) Vẽ parabol \(\left( P \right)\) và đường thẳng \(\left( d \right)\) trên cùng một hệ trục tọa độ \(Oxy.\)
Ta có bảng giá trị:
+) Vẽ đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\)
\(x\)
|
\( – 4\)
|
\( – 2\)
|
\(0\)
|
\(2\)
|
\(4\)
|
\(y = \dfrac{1}{2}{x^2}\)
|
\(8\)
|
\(2\)
|
\(0\)
|
\(2\)
|
\(8\)
|
Vậy đồ thị hàm số\(\left( P \right):\,\,\,y = \dfrac{1}{2}{x^2}\) là đường cong đi qua các điểm \(\left( { – 4;\,\,8} \right),\,\,\,\left( { – 2;\,\,2} \right),\,\,\,\left( {0;\,\,0} \right),\,\,\,\left( {2;\,\,2} \right),\,\,\,\left( {4;\,\,8} \right).\)
+) Vẽ đồ thị hàm số \(\left( d \right):\,\,\,y = x + 2:\)
\(x\)
|
\(0\)
|
\( – 2\)
|
\(y = x + 2\)
|
\(2\)
|
\(0\)
|
Đồ thị hàm số \(\left( P \right):\,\,y = \dfrac{1}{2}{x^2}\) và \(\left( d \right):\,\,\,y = x + 2:\)
b) Viết phương trình đường thẳng \(\left( {{d_1}} \right):\,\,y = ax + b\) song song với \(\left( d \right)\) và cắt \(\left( P \right)\) tại điểm \(A\) có hoành độ bằng \( – 2.\)
Ta có đường thẳng \(\left( {{d_1}} \right):\,\,y = ax + b\) song song với đường thẳng \(\left( d \right):\,\,\,y = x + 2 \Rightarrow \left\{ \begin{array}{l}a = 1\\b \ne 2\end{array} \right..\)
\( \Rightarrow \left( {{d_1}} \right):\,\,\,y = x + b.\)
Gọi \(A\left( { – 2;\,\,{y_A}} \right)\) là giao điểm của đường thẳng \(\left( {{d_1}} \right)\) và đồ thị \(\left( P \right) \Rightarrow A \in \left( P \right)\)
\( \Rightarrow {y_A} = \dfrac{1}{2}.{\left( { – 2} \right)^2} = 2 \Rightarrow A\left( { – 2;\,\,2} \right).\)
Lại có \(A \in \left( {{d_1}} \right)\) nên thay \(x = – 2;y = 2\) vào phương trình đường thẳng \(\left( {{d_1}} \right):\,\,\,y = x + b\) ta được
\(2 = – 2 + b \Leftrightarrow b = 4\,\,\left( {tm} \right)\)
Vậy đường thẳng \(\left( {{d_1}} \right)\) có phương trình: \(y = x + 4.\)
2) Không sử dụng máy tính, giải hệ phương trình: \(\left\{ \begin{array}{l}2x + y = 5\\x + 2y = 4\end{array} \right..\)
\(\begin{array}{l}\left\{ \begin{array}{l}2x + y = 5\\x + 2y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5 – 2x\\x + 2\left( {5 – 2x} \right) = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5 – 2x\\x + 10 – 4x = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 5 – 2x\\3x = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 5 – 2.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right..\end{array}\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;\,\,y} \right) = \left( {2;\,\,1} \right).\)
Câu 3:
Phương pháp:
1) a) Thay \(m\) và phương trình và giải phương trình bậc hai ẩn \(x\).
b) + Phương trình \(\left( 1 \right)\) có hai nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}a \ne 0\\\Delta > 0\\S > 0\\P > 0\end{array} \right.\)
+ Rút \({x_2} = x_1^2\) thay vào điều kiện \({x_1}{x_2} = \dfrac{c}{a}\) tìm nghiệm \({x_1},{x_2}\).
+ Thay \({x_1},{x_2}\) tìm được ở trên vào \({x_1} + {x_2} = – \dfrac{b}{a}\) tìm \(m\).
2) Giải bài toán bằng cách lập phương trình
Bước 1: Chọn ẩn và đặt điều kiện cho ẩn.
Bước 2: Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết. Lập phương trình
Bước 3: Giải phương trình rồi so sánh với điều kiện để chọn ra các giá trị thích hợp và kết luận.
Cách giải:
1) a) Thay \(m = – 8\) vào phương trình \(\left( 1 \right)\) ta được:
\({x^2} – \left( { – 8 + 2} \right)x + \left( { – 8} \right) + 8 = 0 \Leftrightarrow {x^2} + 6x = 0 \Leftrightarrow x\left( {x + 6} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = – 6\end{array} \right.\).
Vậy với \(m = – 8\) thì phương trình có tập nghiệm \(S = \left\{ {0; – 6} \right\}.\)
b) Phương trình \(\left( 1 \right)\) có hai nghiệm dương phân biệt \( \Leftrightarrow \left\{ \begin{array}{l}a = 1 \ne 0\\\Delta > 0\\S > 0\\P > 0\end{array} \right.\)
Có \(\Delta {\rm{ = }}{\left( {m + 2} \right)^2} – 4\left( {m + 8} \right) = {m^2} + 4m + 4 – 4m – 32 > 0 \Leftrightarrow {m^2} – 28 > 0 \Leftrightarrow \left[ \begin{array}{l}m > 2\sqrt 7 \\m < – 2\sqrt 7 \end{array} \right.\,\,\,\,\,\,\left( 1 \right)\).
\(S = – \dfrac{b}{a} = m + 2 > 0 \Leftrightarrow m > – 2\,\,\,\,\,\,\left( 2 \right)\).
\(P = \dfrac{c}{a} = m + 8 > 0 \Leftrightarrow m > – 8\,\,\,\,\,\left( 3 \right)\).
Kết hợp các điều kiện (1), (2), (3) ta được \(\left[ \begin{array}{l}m > 2\sqrt 7 \\ – 8 < m < 2\sqrt 7 \end{array} \right..\)
Theo bài ra ta có:
\(\begin{array}{l}x_1^3 – {x_2} = 0 \Leftrightarrow x_1^3 = {x_2} \Leftrightarrow {x_1}{x_2} = x_1^4 = m + 8 \Leftrightarrow {x_1} = \sqrt[4]{{m + 8}} \Rightarrow {x_2} = \sqrt[4]{{{{\left( {m + 8} \right)}^3}}}\\ \Rightarrow {x_1} + {x_2} = m + 2 \Leftrightarrow \sqrt[4]{{m + 8}} + \sqrt[4]{{{{\left( {m + 8} \right)}^3}}} = m + 8 – 6\end{array}\)
Đặt \(\sqrt[4]{{m + 8}} = t\,\,\left( {t \ge 0} \right)\), ta có
\(\begin{array}{l}\,\,\,\,\,\,\,t + {t^3} = {t^4} – 6\\ \Leftrightarrow {t^4} – {t^3} – t – 6 = 0\\ \Leftrightarrow {t^4} – 16 – \left( {{t^3} + t – 10} \right) = 0\\ \Leftrightarrow \left( {{t^2} – 4} \right)\left( {{t^2} + 4} \right) – \left( {{t^3} – 8 + t – 2} \right) = 0\\ \Leftrightarrow \left( {t – 2} \right)\left( {t + 2} \right)\left( {{t^2} + 4} \right) – \left[ {\left( {t – 2} \right)\left( {{t^2} + 2t + 4} \right) + \left( {t – 2} \right)} \right] = 0\\ \Leftrightarrow \left( {t – 2} \right)\left( {t + 2} \right)\left( {{t^2} + 4} \right) – \left( {t – 2} \right)\left( {{t^2} + 2t + 5} \right) = 0\\ \Leftrightarrow \left( {t – 2} \right)\left( {{t^3} + 2{t^2} + 4t + 8 – {t^2} – 2t – 5} \right) = 0\\ \Leftrightarrow \left( {t – 2} \right)\left( {{t^3} + {t^2} + 2t + 3} \right) = 0\\ \Leftrightarrow t = 2\,\,\left( {Do\,\,\,t \ge 0 \Rightarrow {t^3} + {t^2} + 2t + 3 > 0} \right)\end{array}\)
\( \Rightarrow \sqrt[4]{{m + 8}} = 2 \Leftrightarrow m + 8 = {2^4} = 16 \Leftrightarrow m = 8\,\,\left( {tm} \right)\).
Vậy \(m = 8\).
2) Gọi số tấn mủ cao su mỗi ngày nông trường khai thác được là \(x\) tấn \(\left( {0 < x < 260} \right)\)
\( \Rightarrow \) Thời gian theo dự định khai thác mủ cao su của nông trường là \(\dfrac{{260}}{x}\) (ngày)
Theo thực tế mỗi ngày nông trường khai thác được số tấn mủ cao su là: \(x + 3\) (tấn)
\( \Rightarrow \) Thời gian theo thực tế khai thác mủ cao su của nông trường là \(\dfrac{{261}}{{x + 3}}\) (ngày)
Vì nông trường khai thác xong trước thời hạn 1 ngày nên ta có phương trình
\(\begin{array}{l}\dfrac{{261}}{{x + 3}} + 1 = \dfrac{{260}}{x} \Rightarrow 261x + x\left( {x + 3} \right) = 260\left( {x + 3} \right)\\ \Leftrightarrow 261x + {x^2} + 3x = 260x + 780\\ \Leftrightarrow {x^2} + 4x – 780 = 0\\ \Leftrightarrow {x^2} – 26x + 30x – 780 = 0\\ \Leftrightarrow x\left( {x – 26} \right) + 30\left( {x – 26} \right) = 0\\ \Leftrightarrow \left( {x – 26} \right)\left( {x + 30} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 26 = 0\\x + 30 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 26\,\,\,\left( {tm} \right)\\x = – 30\,\,\,\,\left( {ktm} \right)\end{array} \right.\end{array}\)
Vậy theo kế hoạch mỗi ngày nông trường khai thác \(26\) tấn mủ cao su.
Câu 4:
Cách giải:
+) Áp dụng định lý Pytago trong tam giác vuông ABH vuông tại H ta có:
\(\,\,\,\,\,\,\,A{B^2} = A{H^2} + H{B^2} = {3^2} + {4^2} = 25 \Rightarrow AB = 5\,\,\,\left( {cm} \right)\).
+) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ABC với AH là đường cao ta có:
\(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{A{C^2}}} \Leftrightarrow \dfrac{1}{{A{C^2}}} = \dfrac{1}{{A{H^2}}} – \dfrac{1}{{A{B^2}}} \Leftrightarrow \dfrac{1}{{A{C^2}}} = \dfrac{1}{{{3^2}}} – \dfrac{1}{{{5^2}}} = \dfrac{{16}}{{225}} \Rightarrow AC = \dfrac{{15}}{4}\left( {cm} \right)\)
+) Áp dụng định lý Pytago trong tam giác vuông ABC vuông tại A ta có:
\(B{C^2} = A{B^2} + A{C^2} = {5^2} + {\left( {\dfrac{{15}}{4}} \right)^2} = \dfrac{{625}}{{16}} \Rightarrow BC = \dfrac{{25}}{4}\left( {cm} \right)\).
+) Tam giác ABC vuông tại A có trung tuyến AM nên ta có: \(AM = \dfrac{1}{2}BC = \dfrac{{25}}{8}\,\,\,\left( {cm} \right)\)
+) Diện tích tam giác ABC với AH là đường cao ta có: \({S_{ABC}} = \dfrac{1}{2}AH.BC = \dfrac{1}{2}.3.\dfrac{{25}}{4} = \dfrac{{75}}{8}\,\,\left( {c{m^2}} \right)\).
Vậy \(AB = 5cm,\,\,AC = \dfrac{{15}}{4}cm,\,\,AM = \dfrac{{25}}{8}cm,\,\,{S_{\Delta ABC}} = \dfrac{{75}}{8}\,\,c{m^2}\)
Câu 5:
1) Chứng minh tứ giác \(BCHK\) là tứ giác nội tiếp.
Ta có: \(\angle AKB = {90^0}\) (góc nội tiếp chắn nửa đường tròn (O)) \( \Rightarrow \angle HKB = {90^0}\).
Có \(\angle ACH = \angle HCB = {90^0}\) (\(MN \bot AB;H;C \in MN\) )
Xét tứ giác \(BCHK\) có \(\angle HCB + \angle HKB = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác \(BCHK\) là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng \({180^0}\)).
2) Chứng minh \(AK.AH = {R^2}\).
Xét tam giác \(ACH\) và tam giác \(AKB\) có:
\(\angle BAK\) chung;
\(\angle ACH = \angle AKB = {90^0}\)(cmt)
.
3) Trên tia \(KN\) lấy điểm \(I\) sao cho \(KI = KM\). Chứng minh \(NI = BK\).
Trên tia đối của \(KB\) lấy điểm \(E\) sao cho \(KE = KM = KI\).
Xét tam giác \(OAM\) có đường cao \(MC\) đồng thời là trung tuyến \( \Rightarrow \Delta OAM\) cân tại \(M \Rightarrow OM = AM\).
Lại có \(OA = OM\,\, \Rightarrow \Delta OAM\) đều \( \Rightarrow \angle OAM = {60^0}\).
Ta có: \(\angle AMB = {90^0}\) (góc nội tiếp chắn nửa đường tròn). Do đó tam giác AMB vuông tại M
\( \Rightarrow \angle ABM = {30^0}\)
Xét tam giác vuông \(BCM\) có: \(\angle BMC = {90^0} – \angle ABM = {90^0} – {30^0} = {60^0} \Rightarrow \angle BMN = {60^0}\,\,\,\left( 1 \right)\)
Tứ giác \(ABKM\) là tứ giác nội tiếp \( \Rightarrow \angle EKM = \angle MAB = {60^0}\) (góc ngoài và góc trong tại đỉnh đối diện)
Lại có \(KE = KM\) (theo cách dựng) \( \Rightarrow \Delta MKE\) đều \( \Rightarrow \angle KME = {60^0}\,\,\left( 2 \right)\)
Từ (1) và (2)
\(\begin{array}{l} \Rightarrow \angle BMN = \angle KME = {60^0}\\ \Rightarrow \angle BMN + \angle BMK = \angle KME + \angle BMK\\ \Rightarrow \angle NMK = \angle BME\end{array}\)
Xét tam giác vuông \(BCM\) có: \(\sin \angle CBM = \sin {30^0} = \dfrac{{CM}}{{BM}} = \dfrac{1}{2} \Leftrightarrow BM = 2CM\).
Lại có \(OA \bot MN\) tại \(C \Rightarrow C\) là trung điểm của \(MN\) (quan hệ vuông góc giữa đường kíhn và dây cung)
\( \Rightarrow MN = 2CM\).
\( \Rightarrow MN = BM\,\,\left( { = 2CM} \right)\).
Xét tam giác \(MNK\) và tam giác \(BME\) có:
\(\angle MNK = \angle MBE\) (hai góc nội tiếp cùng chắn cung \(MK\));
\(\begin{array}{l}MN = BM\,\,\left( {cmt} \right);\\\angle NMK = \angle BME\,\,\left( {cmt} \right);\end{array}\)
\( \Rightarrow \Delta MNK = \Delta BME\,\,\left( {g.c.g} \right) \Rightarrow NK = BE\) (2 cạnh tương ứng).
\( \Rightarrow IN + IK = BK + KE\).
Mà \(IK = KE\) (theo cách vẽ) \( \Rightarrow IN = BK\,\,\left( {dpcm} \right)\).