Giải bài 9 trang 89 vở thực hành Toán 8 tập 2

Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các cạnh AB và AC sao cho \(\widehat{ABQ}=\widehat{ACP}\).

Đề bài

Cho tam giác ABC và hai điểm P, Q lần lượt nằm trên các cạnh AB và AC sao cho \(\widehat{ABQ}=\widehat{ACP}\). Chứng minh rằng $\Delta APC\backsim \Delta AQB$ và $\Delta APQ\backsim ACB$.

Phương pháp giải – Xem chi tiết

Chứng minh dựa vào các trường hợp đồng dạng của hai tam giác.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Xét hai tam giác APC và AQB, ta có: $\widehat{ACP}=\widehat{ABQ}$ (theo giả thiết), $\widehat{PAC}=\widehat{QAB}$ (góc chung).

Do đó $\Delta APC\backsim AQB$ (g.g).

Vì $\Delta APC\backsim AQB$ nên $\frac{AP}{AQ}=\frac{AC}{AB}$, hay $\frac{AP}{AC}=\frac{AQ}{AB}$.

Xét hai tam giác APQ và ACB, ta có:

$\frac{AP}{AC}=\frac{AQ}{AB}$ (theo chứng minh trên), $\widehat{PAQ}=\widehat{CAB}$ (góc chung).

Do đó $\Delta APQ\backsim \Delta ACB$ (c.g.c).

TẢI APP ĐỂ XEM OFFLINE

Vở thực hành Toán 8 – Tập 1

Vở thực hành Toán 8 – Tập 2