Giải bài 8 trang 31 sách bài tập toán 8 – Chân trời sáng tạo tập 2

Giải các phương trình sau: a) 12(x5)=2(3x);

Đề bài

Giải các phương trình sau:

a) 12(x5)=2(3x);

b) 126(1,52u)=3(15+2u);

c) (x+3)2x(x4)=14;

d) (x+4)(x4)(x2)2=16.

Phương pháp giải – Xem chi tiết

Sử dụng kiến thức giải phương trình bậc nhất để tìm nghiệm: Để giải một phương trình, ta thường sử dụng các quy tắc biến đổi sau:

+ Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tắc chuyển vế);

+ Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

+ Chia cả hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

Áp dụng các quy tắc trên, phương trình ax+b=0 (với a0) được giải như sau:

ax+b=0

ax=b

x=ba

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) 12(x5)=2(3x)

12x+5=62x

x+2x=6512

x=11

Vậy phương trình đã cho có nghiệm là x=11

b) 126(1,52u)=3(15+2u)

129+12u=45+6u

12u6u=45+912

6u=48

u=486=8

Vậy phương trình đã cho có nghiệm là u=8

c) (x+3)2x(x4)=14

x2+6x+9x2+4x=14

10x=149

10x=5

x=12

Vậy phương trình đã cho có nghiệm là x=12

d) (x+4)(x4)(x2)2=16

x216x2+4x4=16

4x=16+16+4

4x=36

x=9

Vậy phương trình đã cho có nghiệm là x=9

TẢI APP ĐỂ XEM OFFLINE