Giải bài 57 trang 90 SBT toán 10 – Cánh diều

Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:

Đề bài

Trong mặt phẳng toạ độ Oxy, cho các đường thẳng:

1: x + y + 1 = 0,  ∆2: 3x + 4y + 20 = 0,  ∆3: 2xy + 50 = 0

và đường tròn (C): (x + 3)2 + (y −1)2 = 9.

Xác định vị trí tương đối của các đường thẳng đã cho đối với đường tròn (C).

Phương pháp giải – Xem chi tiết

Bước 1: Xác định tọa độ tâm I và bán kính của đường tròn (C)

Bước 2: Tính khoảng cách từ tâm I đến các đường thẳng và kết luận về vị trí tương đối của các đường thẳng đã cho với (C)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

(C) có tâm I(-3 ; 1) và bán kính R = 3

+) Xét ∆1: x + y + 1 = 0

Ta có: \(d(I,{\Delta _1}) = \frac{{\left| { – 3 + 1 + 1} \right|}}{{\sqrt {{1^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2} < R\) \( \Rightarrow {\Delta _1}\) cắt đường tròn (C) tại 2 điểm

+) Xét ∆2: 3x + 4y + 20 = 0

Ta có: \(d(I,{\Delta _2}) = \frac{{\left| {3.( – 3) + 4.1 + 20} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3 = R\) \( \Rightarrow {\Delta _2}\) tiếp xúc với đường tròn (C)

+ Xét ∆3: 2xy + 50 = 0

Ta có: \(d(I,{\Delta _3}) = \frac{{\left| {2.( – 3) – 1 + 50} \right|}}{{\sqrt {{2^2} + {{( – 1)}^2}} }} = \frac{{43\sqrt 5 }}{5} > R\) \( \Rightarrow {\Delta _3}\) và đường tròn (C) không giao nhau

 

TẢI APP ĐỂ XEM OFFLINE