Giải bài 3 trang 55 vở thực hành Toán 8

Cho hình bình hành ABCD có AB = 3 cm, AD = 5 cm.

Đề bài

Cho hình bình hành ABCD có AB = 3 cm, AD = 5 cm.

a) Hỏi tia phân giác của góc A cắt cạnh CD hay cạnh BC?

b) Tính khoảng cách từ giao điểm đó đến điểm C.

Phương pháp giải – Xem chi tiết

Sử dụng tính chất của hình bình hành và tia phân giác của một góc.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

(H.3.26). a) Do ABCD là hình bình hành nên AD // BC, BC = AD = 5 cm.

Do BC = 5 cm nên có điểm E duy nhất trên cạnh BC sao cho BE = 3 cm.

Vì BE = AB  ∆BAE cân tại B \( \Rightarrow \widehat {BAE} = \widehat {BEA}.\) (1)

Do AD // BC \( \Rightarrow \widehat {BEA} = \widehat {EAD}\) (hai góc so le trong). (2)

Từ (1) và (2), ta có \(\widehat {BAE} = \widehat {EAD}\) hay tia AE là tia phân giác của góc BAD. Tia này không cắt cạnh CD.

b) Ta có EC = BC – BE = 5 – 3 = 2 (cm).

TẢI APP ĐỂ XEM OFFLINE

Vở thực hành Toán 8 – Tập 1

Vở thực hành Toán 8 – Tập 2