Bài 69 trang 16 SBT toán 9 tập 1

Giải bài 69 trang 16 sách bài tập toán 9. Trục căn thức ở mẫu và rút gọn ( nếu được)…

Lựa chọn câu để xem lời giải nhanh hơn

Trục căn thức ở mẫu và rút gọn (nếu được): 

LG câu a

\( \displaystyle{{\sqrt 5  – \sqrt 3 } \over {\sqrt 2 }}\);

Phương pháp giải:

Áp dụng: 

\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\) với \(B>0\). 

Lời giải chi tiết:

\( \displaystyle{{\sqrt 5  – \sqrt 3 } \over {\sqrt 2 }}\) \( \displaystyle = {{(\sqrt 5  – \sqrt 3 )\sqrt 2 } \over {{{(\sqrt 2 )}^2}}} = {{\sqrt {10}  – \sqrt 6 } \over 2}\) 

Vui lòng nhập mật khẩu để tiếp tục

test321

LG câu b

\( \displaystyle{{26} \over {5 – 2\sqrt 3 }}\);

Phương pháp giải:

Áp dụng: 

\(\dfrac{A}{{\sqrt B  \pm C}} = \dfrac{{A(\sqrt B  \mp C)}}{{B – {C^2}}}\) với \(B\ge 0, B\ne C^2\).

Lời giải chi tiết:

\( \displaystyle{{26} \over {5 – 2\sqrt 3 }}\) \( \displaystyle = {{26(5 + 2\sqrt 3 )} \over {(5 – 2\sqrt 3 )(5 + 2\sqrt 3 )}}\) \( \displaystyle = {{26(5 + 2\sqrt 3 )} \over {25 – 12}}\)

\( \displaystyle = {{26(5 + 2\sqrt 3 )} \over {13}}\) \( \displaystyle = 2(5 + 2\sqrt 3 ) = 10 + 4\sqrt 3 \)  

LG câu c

\( \displaystyle{{2\sqrt {10}  – 5} \over {4 – \sqrt {10} }}\);

Phương pháp giải:

Rút gọn rồi áp dụng: 

\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\) với \(B>0\).

Lời giải chi tiết:

\( \displaystyle{{2\sqrt {10}  – 5} \over {4 – \sqrt {10} }}\) \( \displaystyle = {{2\sqrt {2.5}  – \sqrt {{5^2}} } \over {2\sqrt {{2^2}}  – \sqrt {2.5} }}\)

\( \displaystyle = {{\sqrt 5 (2\sqrt 2  – \sqrt 5 )} \over {\sqrt 2 (2\sqrt 2  – \sqrt 5 )}} = {{\sqrt 5 } \over {\sqrt 2 }} = {{\sqrt 5 .\sqrt 2 } \over {{{(\sqrt 2 )}^2}}}\) \( \displaystyle = {{\sqrt {10} } \over 2}\)

LG câu d

\( \displaystyle{{9 – 2\sqrt 3 } \over {3\sqrt 6  – 2\sqrt 2 }}\). 

Phương pháp giải:

Rút gọn rồi áp dụng:  

\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\) với \(B>0\).

Lời giải chi tiết:

\( \displaystyle{{9 – 2\sqrt 3 } \over {3\sqrt 6  – 2\sqrt 2 }}\) \( \displaystyle= {{3(\sqrt {{3}})^2  – 2\sqrt 3 } \over {3\sqrt {3.2}  – 2\sqrt 2 }}\)

\( \displaystyle = {{\sqrt 3 (3\sqrt 3  – 2)} \over {\sqrt 2 (3\sqrt 3  – 2)}} = {{\sqrt 3 } \over {\sqrt 2 }} = {{\sqrt {3.} \sqrt 2 } \over {{{(\sqrt 2 )}^2}}}\) \( \displaystyle= {{\sqrt 6 } \over 2}\)  

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE