Giải bài 7.37 trang 41 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho hình chóp có đáy \(ABCD\) là hình thoi tâm \(O\), biết \(SO \bot \left( {ABCD} \right)\)

Đề bài

Cho hình chóp  có đáy \(ABCD\) là hình thoi tâm \(O\), biết \(SO \bot \left( {ABCD} \right)\), \(AC = 2a\sqrt 3 ,BD = 2a\) và khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{2}\). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).

Phương pháp giải – Xem chi tiết

Áp dụng công thức tính thể tích khối chóp: \({\rm{S}} = \frac{1}{3}{\rm{Bh}}\).

Trong đó: \({\rm{B}}\) là diện tích đa giác đáy

h là đường cao của hình chóp

Bước 1: Tính chiều cao \(SO\) của hình chóp

Phân tích: \(d\left( {A,\left( {SBC} \right)} \right) = 2 \cdot d\left( {O,\left( {SBC} \right)} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right)\)

Dựng hình

 

Khoảng cách từ \(d\left( {O,\left( {SBC} \right)} \right) = OH\)

Xét tam giác \(SOM\) vuông tại \(O\), đường cao \(OH\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{M^2}}} + \frac{1}{{O{S^2}}}\), suy ra \(SO\).

Bước 2: Tính diện tích đáy \(ABCD\)

Bước 3: Tính thể tích khối chóp \(S.ABCD\): \({V_{S \cdot ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SO\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\), ta chứng minh được \(OH \bot \left( {SBC} \right)\). Vì \(O\) là trung điểm của \(AC\) nên\(d\left( {A,\left( {SBC} \right)} \right) = 2 \cdot d\left( {O,\left( {SBC} \right)} \right) = 2 \cdot OH = \frac{{a\sqrt 3 }}{2}\),

suy ra \({\rm{OH}} = \frac{{{\rm{a}}\sqrt 3 }}{4}\).

Tam giác \(OBC\) vuông tại \(O\), có \(OB = a,OC = a\sqrt 3 \)

 

và đường cao \(OM\) nên \(OM = \frac{{OB \cdot OC}}{{BC}} = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(SOM\) vuông tại \(O\), đường cao \(OH\) nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{M^2}}} + \frac{1}{{O{S^2}}}\), suy ra \(SO = \frac{a}{2}\).

Vậy \({V_{S \cdot ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{1}{3} \cdot \frac{1}{2} \cdot 2a\sqrt 3  \cdot 2a \cdot \frac{a}{2} = \frac{{{a^3}\sqrt 3 }}{3}\).

TẢI APP ĐỂ XEM OFFLINE