Giải bài tập 16 trang 23 SGK Toán 9 tập 1 – Chân trời sáng tạo

Nhà máy luyện thép hiện có sẵn loại thép chứa 10% carbon và loại thép chứa 20% carbon. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt. Tính khối lượng thép mỗi loại cần dùng để luyện được 1000 tấn thép chứa 16% carbon từ hai loại thép trên.

Đề bài

Nhà máy luyện thép hiện có sẵn loại thép chứa 10% carbon và loại thép chứa 20% carbon. Giả sử trong quá trình luyện thép các nguyên liệu không bị hao hụt. Tính khối lượng thép mỗi loại cần dùng để luyện được 1000 tấn thép chứa 16% carbon từ hai loại thép trên.

Phương pháp giải – Xem chi tiết

Dựa vào đề bài để lập ra hai phương trình bậc nhất ẩn x và y

Giải hệ hai phương trình vừa tìm được theo phương pháp thế hoặc phương pháp cộng đại số.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Gọi x và y lần lượt là số tấn thép của loại 10% carbon và 20% carbon cần dùng (x;y > 0).

Cần dùng để luyện được 1000 tấn thép, tan có phương trình: x + y = 1000  (1)

cần dùng chứa 16% carbon từ hai loại thép trên, ta có phương trình:

10%x + 20%y = 1000.16%   (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 1000}\\{10\% x + 20\% y = 1000.16\% }\end{array}} \right.\)

Giải hệ phương trình ta được: \(\left\{ {\begin{array}{*{20}{c}}{x = 400}\\{y = 600}\end{array}} \right.\)

Vậy số tấn thép của loại 10% carbon cần dùng là 400 tấn và số tấn thép của loại 20% carbon cần dùng là 600 tấn.

TẢI APP ĐỂ XEM OFFLINE