Giải bài 14 trang 120 SGK Toán 7 tập 2 – Cánh diều

Cho tam giác nhọn ABC có AB < AC. Hai đường cao AD và CE cắt nhau tại H. Khi đó

Đề bài

Cho tam giác nhọn ABCAB < AC. Hai đường cao ADCE cắt nhau tại H. Khi đó

A.\(\widehat {HAB} = \widehat {HAC}\).                    

B.\(\widehat {HAB} > \widehat {HAC}\).    

C.\(\widehat {HAB} = \widehat {HCB}\).               

D.\(\widehat {HAC} = \widehat {BAC}\).

Phương pháp giải – Xem chi tiết

Trpng một tam giác, góc đối diện với cạnh lớn hơn thì lớn hơn.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Ta có: AB < AC nên \(\widehat {ACB} < \widehat {ABC}\) (góc ACB đối diện với cạnh AB; góc ABC đối diện với cạnh AC)

Mà tam giác ADB và tam giác ADC vuông tại D.

Vì tổng hai góc nhọn trong một tam giác vuông bằng 90°.

Mà \(\widehat {ACB} < \widehat {ABC}\).

Suy ra: \(90^\circ  – \widehat {ACB} > 90^0 – \widehat {ABC}\) hay \(\widehat {DAC} > \widehat {DAB}\).

Vậy \(\widehat {HAC} > \widehat {HAB}\) hay \(\widehat {HAB} < \widehat {HAC}\).

Suy ra: A, B, D sai.

Đáp án: C.\(\widehat {HAB} = \widehat {HCB}\).

TẢI APP ĐỂ XEM OFFLINE

Toán 7 tập 2 – Cánh diều