Bài tập 15 trang 41 Tài liệu dạy – học Toán 7 tập 1

Giải bài tập Tính giá trị của mỗi tỉ số.

Đề bài

 Cho \({a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}}\,\,\left( {a,b,c > 0} \right)\)

Tính giá trị của mỗi tỉ số.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\eqalign{  & {a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}}  \cr  &  \Rightarrow {a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}} = {{a + b + c} \over {2b + c + 2c + a + 2a + b}}  \cr  &  = {{a + b + c} \over {3a + 3b + 3c}} = {{a + b + c} \over {3(a + b + c)}} = {1 \over 3} \cr} \)

(Vì \(a + b + c \ne 0)\)

Vậy \({a \over {2b + c}} = {b \over {2c + a}} = {c \over {2a + b}} = {1 \over 3}.\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE