Bài 3.42 trang 132 SBT hình học 12

Giải bài 3.42 trang 132 sách bài tập hình học 12. Lập phương trình đường vuông góc chung của d và d’…

Đề bài

Cho hai đường thẳng: \(d:\dfrac{{x – 1}}{{ – 1}} = \dfrac{{y – 2}}{2} = \dfrac{z}{3}\) và \(d’:\left\{ {\begin{array}{*{20}{c}}{x = 1 + t’}\\{y = 3 – 2t’}\\{z = 1}\end{array}} \right.\)

Lập phương trình đường vuông góc chung của \(d\) và \(d’\).

Phương pháp giải – Xem chi tiết

– Tham số hóa tọa độ hai điểm \(M,M’\) lần lượt thuộc hai đường thẳng \(d,d’\).

– Sử dụng điều kiện \(\overrightarrow {MM’} \) là đường vuông góc chung của \(d,d’\) thì \(\left\{ \begin{array}{l}\overrightarrow {MM’} .\overrightarrow {{u_d}}  = 0\\\overrightarrow {MM’} .\overrightarrow {{u_{d’}}}  = 0\end{array} \right.\).

– Tìm tọa độ của \(M,M’\) và viết phương trình đường thẳng \(MM’\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Phương trình tham số của đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 – t}\\{y = 2 + 2t}\\{z = 3t}\end{array}} \right.\)

Vecto chỉ phương của hai đường thẳng \(d\) và \(d’\) lần lượt là \(\overrightarrow a  = ( – 1;2;3),\overrightarrow {a’}  = (1; – 2;0)\).

Xét điểm M(1 – t; 2 + 2t; 3t) trên d và điểm M’(1 + t’; 3 – 2t’ ; 1) trên d’ ta có  \(\overrightarrow {MM’}  = (t’ + t;1 – 2t’ – 2t;1 – 3t)\).

MM’ là đường vuông góc chung của d và d’.

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\overrightarrow {MM’} .\overrightarrow a  = 0}\\{\overrightarrow {MM’} .\overrightarrow {a’}  = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} – t’ – t + 2 – 4t’ – 4t + 3 – 9t = 0\\t’ + t – 2 + 4t’ + 4t = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{5t’ + 14t = 5}\\{5t’ + 5t = 2}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = \dfrac{1}{3}}\\{t’ = \dfrac{1}{{15}}}\end{array}} \right.\)

Thay giá trị của t và t’ vào ta được tọa độ M và M’ là \(M\left( {\dfrac{2}{3};\dfrac{8}{3};1} \right),M’\left( {\dfrac{{16}}{{15}};\dfrac{{43}}{{15}};1} \right)\)

Do đó \(\overrightarrow {MM’}  = \left( {\dfrac{6}{{15}};\dfrac{3}{{15}};0} \right)\)

Suy ra đường vuông góc chung \(\Delta \) của d và d’ có vecto chỉ phương \(\overrightarrow u  = (2;1;0)\)

Vậy phương trình tham số của \(\Delta \) là: \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{2}{3} + 2t}\\{y = \dfrac{8}{3} + t}\\{z = 1}\end{array}} \right.\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE