Bài 3.15 trang 104 SBT hình học 12

Giải bài 3.15 trang 104 sách bài tập hình học 12. Trong không gian Oxyz hãy xác định tâm và bán kính các mặt cầu có phương trình sau đây:…

Đề bài

Trong không gian Oxyz hãy xác định tâm và bán kính các mặt cầu có phương trình sau đây:

a) x2 + y2 + z2 – 6x + 2y – 16z – 26 = 0 ;

b) 2x2 + 2y2 + 2z2 + 8x – 4y – 12z – 100 = 0

Phương pháp giải – Xem chi tiết

Mặt cầu \({x^2} + {y^2} + {z^2} – 2ax – 2by – 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} – d} \).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Tâm \(I(3; -1; 8)\), bán kính \(R = \sqrt {{3^2} + {1^2} + {8^2} + 26}  = 10\)

b) Ta có: \(2{x^2} + 2{x^2} + 2{y^2} + 2{z^2}\) \( + 8x – 4y – 12z – 100 = 0\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2}\) \( + 4x – 2y – 6z – 50 = 0\)

Mặt cầu có tâm \(I(-2; 1; 3)\), bán kính \(R = \sqrt {{2^2} + {1^2} + {3^2} + 50}  = 8\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE