Trả lời câu hỏi 1 Bài 2 trang 71 Toán 9 Tập 2

Hãy chứng minh định lý trên.

Đề bài

Hãy chứng minh định lý trên.

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

Số đo cung = số đo góc ở tâm chắn cung đó.

Chứng minh hai tam giác bằng nhau để suy ra các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau.

Vui lòng nhập mật khẩu để tiếp tục

test321

Lời giải chi tiết

a) Chứng minh: \(\overparen{AB} = \overparen{CD}\) \( \Rightarrow \)  AB = CD

Vì \(\overparen{AB} = \overparen{CD}\) \( \Rightarrow \widehat {AOB} = \widehat {COD}\) (Số đo cung = số đo góc ở tâm chắn cung đó)

Xét \(\Delta OAB\) và \(\Delta OCD\)  có:

\(\eqalign{& OA = OC = R  \cr & \widehat {AOB} = \widehat {COD}  \cr & OB = OD = R  \cr &  \Rightarrow \Delta OAB = \Delta OCD\,\,\left( {c.g.c} \right)  \cr}\)

\( \Rightarrow AB = CD \) ( 2 cạnh tương ứng)

b) Chứng minh: AB = CD \( \Rightarrow \)  \(\overparen{AB} = \overparen{CD}\)

Xét \(\Delta OAB\) và \(\Delta OCD\)  có:

\(\eqalign{& OA = OC = R  \cr & AB = CD\,\,\left( {gt} \right)  \cr & OB = OD = R  \cr &  \Rightarrow \Delta OAB = \Delta OCD\,\,\left( {c.c.c} \right)  \cr}\)

\(\Rightarrow \widehat {AOB} = \widehat {COD} \) (2 góc tương ứng)

\( \Rightarrow \) \(\overparen{AB} = \overparen{CD}\) (Số đo góc ở tâm chắn cung = số đo cung đó)

TẢI APP ĐỂ XEM OFFLINE